Twice a Day, Twice the Ease: Simplifying Nephropathic Cystinosis Treatment

Dieter Haffner, M.D.

Professor and Chairman

Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases

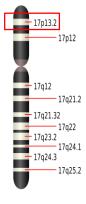
Center for Rare Kidney Diseases

Medizinische Hochschule Hannover

Disclosures

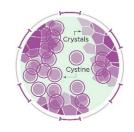
Dieter Haffner has disclosed the following financial relationships.

Research grants


Chiesi, Cystinosis Research Foundation, Else Kröner-Fresenius-Stiftung,
 German Research Foundation, and Kyowa Kirin

Speaker fees/consultancy

 Advicenne, Biologix, Chiesi, Kyowa Kirin, Medison Pharma, Recordati Rare Diseases, and Ultragenyx

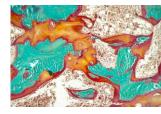

Nephropathic cystinosis

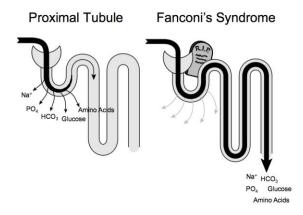
- An autosomal recessive disease caused by lysosomal accumulation of cystine due to defective exodus of cystine out of the lysosomes
- Lysosomal cystinosin (CTNS, 17p13) is mutated in cystinosis
- Incidence ~1:100,000 200,000 newborns
- Most common cause of inherited renal Fanconi syndrome progressing to kidney failure (if untreated) around the age of 10 years

Macrophage with cystine crytals

Diagnosis of cystinosis

- Suspected clinical presentation
 - Failure to thrive, polyuria, polydipsia, dehydration, fever episodes, rickets

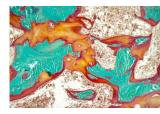




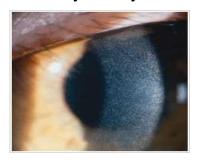
due to renal Fanconi syndrome (maybe incomplete at the beginning)

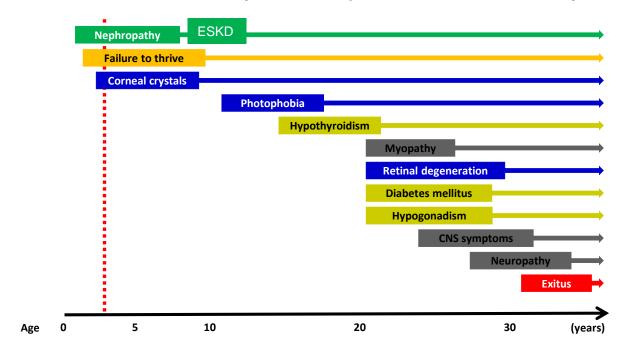
Diagnosis of cystinosis

- Suspected clinical presentation
 - Failure to thrive, polyuria, polydipsia, dehydration, fever episodes, rickets



due to renal Fanconi syndrome (maybe incomplete at the beginning)


- Measurement of elevated cystine content in leukocytes:
 - Patients at diagnosis > 2 nmol ½ cystine/mg protein
 - Controls < 0.3 nmol ½ cystine/mg protein
 - Heterozygotes < 1 nmol ½ cystine/mg protein


Molecular analysis of cystinosis gene

Corneal cystine crystals

Cystinosis: natural history in untreated patients

Clinical manifestations of cystinosis in patients not treated with cysteamine¹

Treatment of cystinosis

Symptomatic

- Free access to water
- Nutrition: adequate caloric, protein, and calcium intake = 100% SDI (suggested dietary intake)
 - Dietician, tube feeding / PEG in young children
- Replacement of electrolytes, phosphate, and alkali
- Active vitamin D (1α calcidiol or calcitriol) in <u>combination</u> with phosphate supplements
- Vitamin D supplementation (if required)

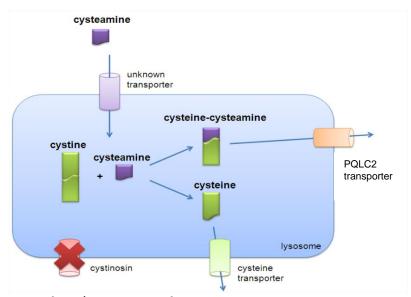
Treatment of cystinosis

Symptomatic

- Free access to water
- Nutrition: adequate caloric, protein, and calcium intake = 100% SDI (suggested dietary intake)
 - Dietician, tube feeding / PEG in young children
- Replacement of electrolytes, phosphate, and alkali
- Active vitamin D (1α calcidiol or calcitriol) in combination with phosphate supplements
- Vitamin D supplementation (if required)
- Indomethacin to decrease diuresis and electrolyte losses (if required)
- RAS inhibitors in case of proteinuria (>1 g/g creatinine)
- Growth hormone in children with persistent poor growth
- Hormone replacement therapy for hypothyroidism, hypogonadism (male), and diabetes
- Male: percutaneous epididymal sperm asservation and sperm cryopreservation

Treatment of cystinosis

Specific treatment with cysteamine


- Depletes intra-cellular cystine accumulation
- Life long treatment
- Must be continued after kidney transplantation
- **Systemic**: **1.3** 1.95 g/m² BSA

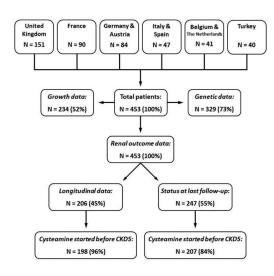
Immediate release: Cystagon®, every 6h

Delayed release: Procysbi®, every 12h

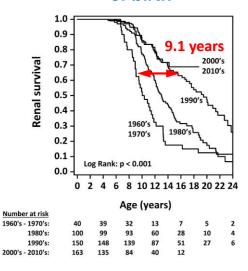
Target: leukocyte cystine levels < 1.0 nmol ½ cystine/mg protein

- Topical for corneal depositions:
 - 0.5% eye drops every 1-2h
 - 0.55% gel formulation (Cystadrops®), every 6h

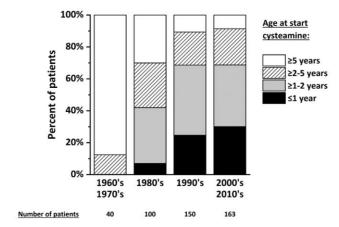
Improving kidney prognosis

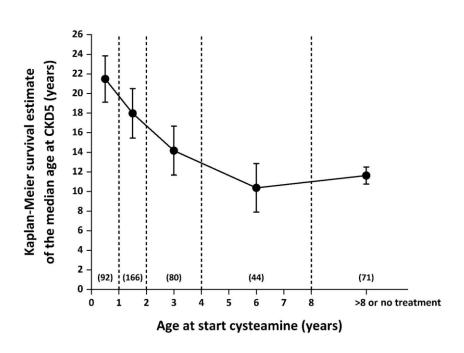


Prevent developing kidney failure

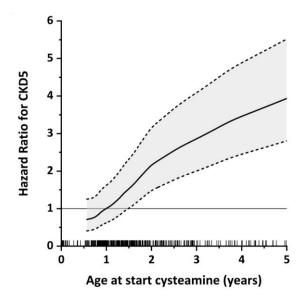

Prevent or reverse Fanconi syndrome

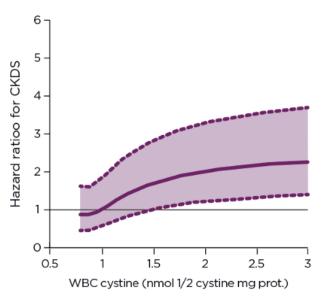
European cohort


Study design¹


Survival function for patients divided per decade of birth¹

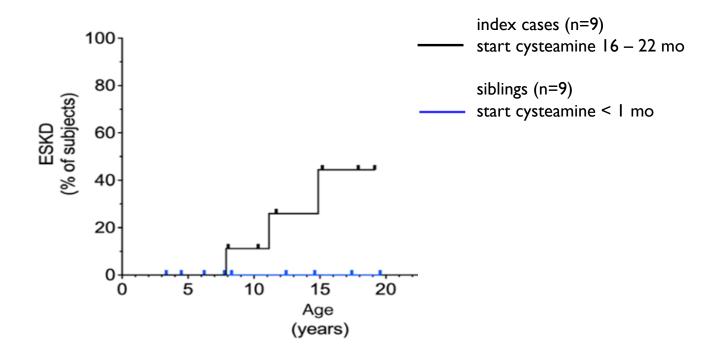
Age at which cysteamine therapy was prescribed¹




Age at dialysis according to the age at starting cysteamine

Cysteamine therapy and kidney function outcome

Impact of cysteamine therapy on the risk of progressing to end-stage kidney disease*1



^{*}Shaded areas indicate the 95% confidence intervals of the hazard ratio; vertical bars at the bottom of the graphs indicate individual patients. Only patients that had started cysteamine before the age of 8 years were included in this analysis.

CKD5, stage 5 chronic kidney disease.

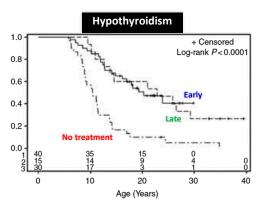
1. Emma F, et al. Kidney Int. 2021;100(5):1112-1123.

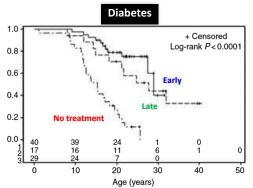
Starting cysteamine at birth prevents ESKD in siblings of cystinosis patients

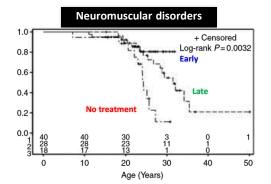
Effect of early cysteamine on renal Fanconi syndrome

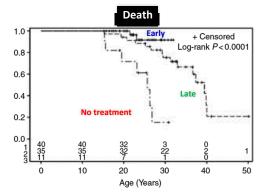
n = 6 cystinosis patients treated with cysteamine < 2 mo of age

Patient #	105	88	5	74	8	99
Age (y-mo)	2-7	4-2	16-7	10-9	18-7	6-5
Oral replacement						
Potassium	No	No	No	No	Yes	Yes
Bicarbonate	No	No	No	No	Yes	Yes
Citrate	No	No	No	No	No	Yes
Phosphate	No	No	No	No	Yes	Yes

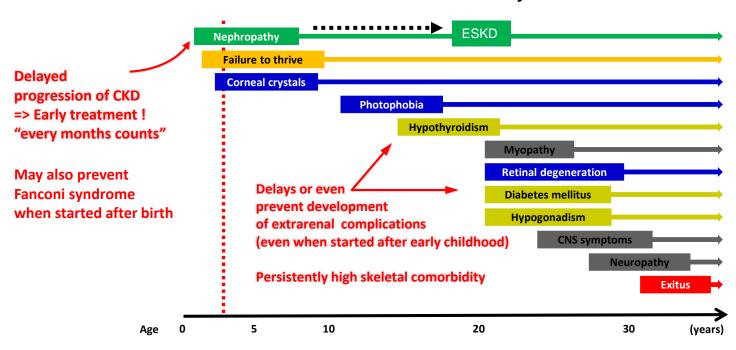

Hohenfellner et al. Mol Genet Metab 2023


Extrarenal symptoms: French study in 86 adults


Survival curves


Age when cysteamine was started

Early: 0-4 years N = 40 Late: >5 years N = 8 No treatment N = 38



Cystinosis: impact of cysteamine treatment

Clinical manifestations of cystinosis^{1,2,3,4}

Pregnancy and Breastfeeding in Nephropathic Cystinosis With Native Kidneys

Lillian Chan¹, Jenny Wichart², Tony Kiang³, Rshmi Khurana^{1,4}, Jon A. Gangoiti⁵, Bruce A. Barshop⁵ and Julian Midgley⁶

¹Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; ²Department of Pharmacy, Alberta Health Services, Calgary, Alberta, Canada; ³Tanslational Pharmacotherapy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; ⁴Department of Obstetrics & Gynecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada; ⁵Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, California, USA; and ⁶Department of Pediatrics, University of Calaary. Calaary. Alberta, Canada

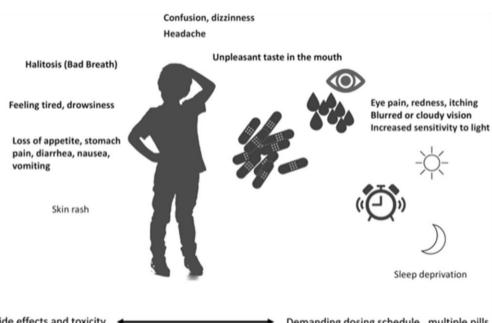


Figure 1. Urinary proteins and eGFR at baseline, during pregnancy and postpartum. eGFR, estimated glomerular filtration rate.

Table 1. Breastmilk cysteamine concentration relative to dose of delayed-release cysteamine bitartrate at steady state

Time postdose (h)	Breastmilk cysteamine concentration (mg/l)
0	0.12
2	0.76
4	1.87
6	0.51

The calculated relative infant dose was 0.4%.


The predicted infant cysteamine dose over 24 hours was 0.52 mg.

REVIEW

Addressing the psychosocial aspects of transition to adult care in patients with cystinosis

 $Stella\ Stabouli^1 \circledcirc \cdot Anna\ Sommer^2 \cdot Stefanie\ Kraft^2 \cdot Katharina\ Schweer^2 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Marchina Schweer^3 \cdot Dirk\ Bethe^3 \cdot Aurelia\ Bertholet-Thomas^4 \cdot Dirk\ Bethe^3 \cdot Dirk\ Bertholet-Thomas^4 \cdot Dirk\ Bertholet-Th$ Suzanne Batte 5 · Gema Ariceta 6 · Sandra Brengmann 7 · Justine Bacchetta 4 · Francesco Emma 8 · Elena Levtchenko 9 · Rezan Topaloglu¹⁰ · Lore Willem¹¹ · Dieter Haffner¹² · Jun Oh²

Side effects and toxicity

Demanding dosing schedule, multiple pills

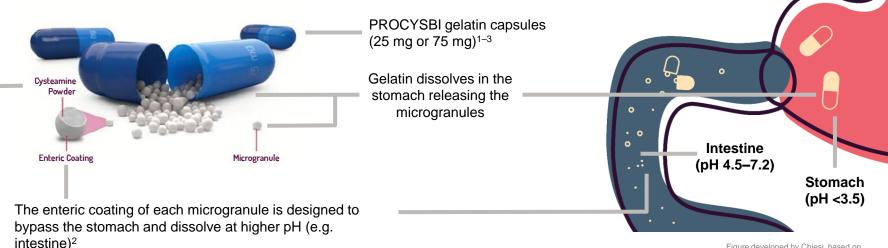
Adherence to Cysteamine Therapy Among Patients Diagnosed with Cystinosis in Saudi Arabia: A Prospective Cohort Study

Reem Algasem¹, Nedaa Zainy¹, Essam Alsabban², Hamad Almojalli³, Khalid Alhasan³, Tariq Ali³, Deiter Broering³ and Hassan Aleid^{3,*}

Table 1. Baseline characteristics of the participants ($n = 25$) of the study
--

	Mean + SD *		
Age (years)	19.04 + 6.78		
Weights (Kg)	41.3 + 14.09		
Height (cm)	137.74 + 18.12		
	N (%)		
Gender			
Male	9 (36)		
Female	16 (64)		
Cysteamine therapy			
Oral (IR)	23 (92)		
Eye drops	13 (52)		

Morisky Medication Adherance Scale


Medication Possession Ratio

Health Survey (SF-36)

- IR cysteamine: 26% of patients were highly adherant; 46% of patients showed a median level of adherance
- Cysteamine eye drops: 40% of patients were highly adherant; 33% showed a median level of adherance
- QoL affected in the domains of 'social functioning' and 'energy/fatigue'
- ⇒ Sub-optimal adherence to IR cysteamine and cysteamine eye drops in patients from Saudi Arabia

^{*} SD—Standard Deviation.

Proprietary, enteric-coated microgranule technology of PROCYSBI

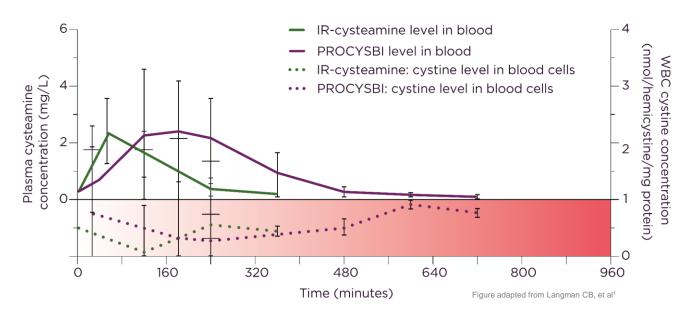

- At pH above 5.5, the microgranules dissolve, releasing cysteamine powder into the intestine4
- Each microgranule has a different thickness enteric coating → differential dissolution in small intestine²
- This provides the delayed and extended release of cysteamine^{1,2}

Figure developed by Chiesi, based on information from the European patent.²

1. Langman CB, et al. Clin J Am Soc Nephrol 2012;7:1112–1120 [Erratum in Clin J Am Soc Nephrol. 2013;8:468]; 2. European patent office, PROCYSBI patent EU EP1919458A2, 2012; 3. PROCYSBI EU Summary of Product Characteristics. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002465/WC500151313.pdf; 4. Dohil R and Rioux P. Clin Pharmacol Drug Devel 2013;2:178–185.

Delayed-release PROCYSBI can be dosed 12 hourly¹

PROCYSBI provides 12 hours of cystine control, enabling twicedaily dosing¹

- This RCT compared PROCYSBI with IR-cysteamine in 43 patients with cystinosis
- The pink dotted line shows intracellular cystine levels remaining controlled through a single 12 h PROCYSBI dose
- The twice-daily dosing of PROCYSBI enables patients to avoid night-time dosing

➤ 2 year treatment: preserved kidney function and improved quality of life (social function, school function, and total function scores)²

What is the advice around food and drink with PROCYSBI?

PROCYSBI administration

 PROCYSBI should be taken orally, either as a whole capsule or the capsule can be opened and the contents (microgranules) sprinkled into (acidic) food or drink¹

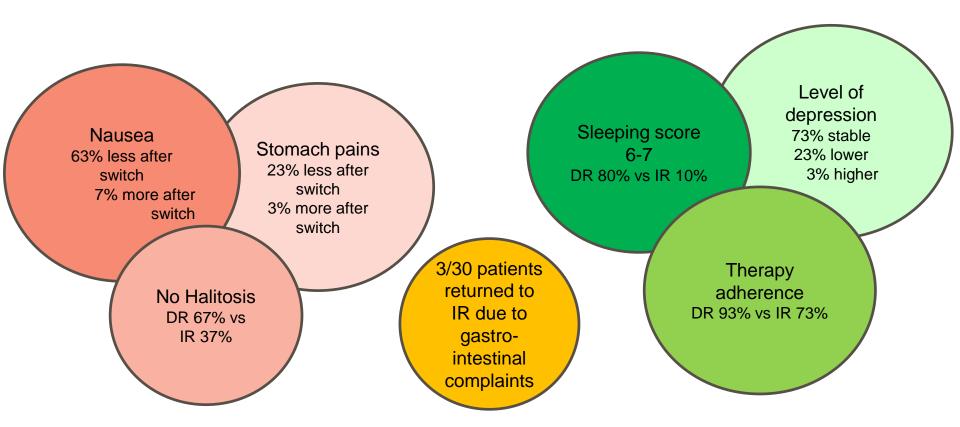
- PRCYSBI sprinkled onto apple sauce can be given via a gastrostomy feeding tube (14 French or larger)¹
- PROCYSBI should not be administered with food rich in fat or proteins, or with frozen food like ice cream¹
- Food and drink with pH <5.5 (acid) shown not to compromise the integrity of PROCYSBI beads in an in vitro study²

With or without food?

- Ideally, patients should try to avoid meals for at least 1 hour before and 1 hour after taking PROCYSBI¹
- If fasting is not possible, patients should eat a small amount (~100 g) of food (preferably carbohydrates) during the hour before and after PROCYSBI dose¹

It is important to take PROCYSBI at the same times every day, and with the same types and amounts of food¹

Dutch & Flemish Patients' Reported Outcomes Study



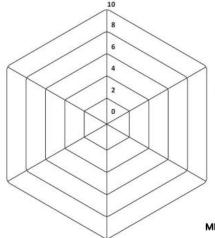
 Retrospective questionnaire study organized by patients' advocate organisation 'Cystinose groep Nederland en Vlaanderen'

- Objective: analysing burden of treatment, adherence to therapy and side effects after switch from IR to DR cysteamine
- n = 30 patients on average 2 years after the switch

Self-Reported Outcomes

Positive Health Concept

PILLARS FOR POSITIVE HEALTH



- Medical facts
- Medical observations
- Physical functioning
- · Complaints and pain
- Energy

- Basis ADL (Activities of Daily Living)
- Instrumental ADL
- · Ability to work
- · Health literacy

DAILY **FUNCTIONING**

MENTAL

- · Cognitive functioning
- Emotional state
- Esteem/self-respect
- · Experiencing to be in charge/ manageability
- · Self-management
- · Understanding one's situation/ comprehensibility

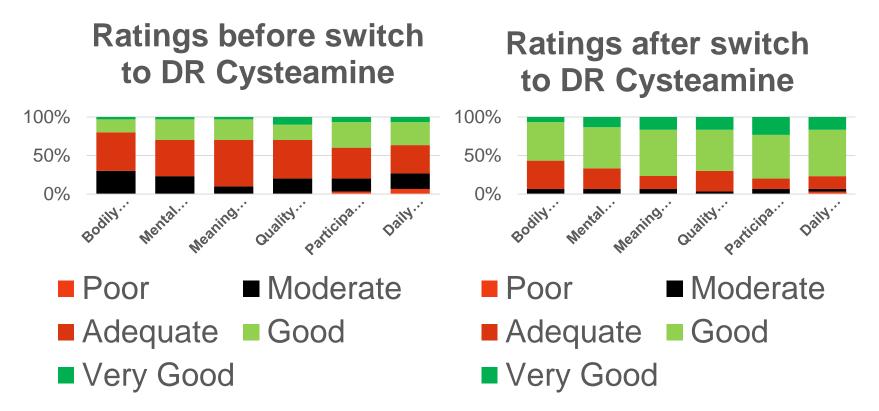
Purpose/meaningfulness Striving for aims/ideals

 Future prospects Acceptance

WELL-BEING . Resilience

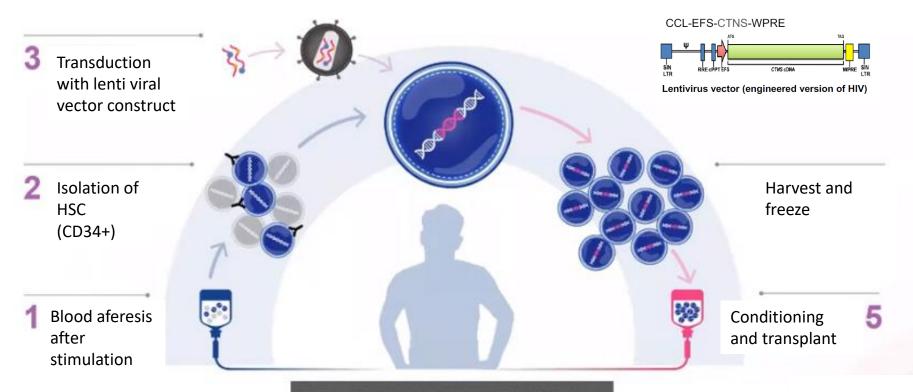
SOCIAL - SOCIETAL **PARTICIPATION**

- Social and communicative skills
- Social contacts
- · Meaningful relationships
- · Experiencing to be accepted
- · Community involvement
- · Meaningful work/occupation


· Quality of life/well-being

QUALITY OF LIFE

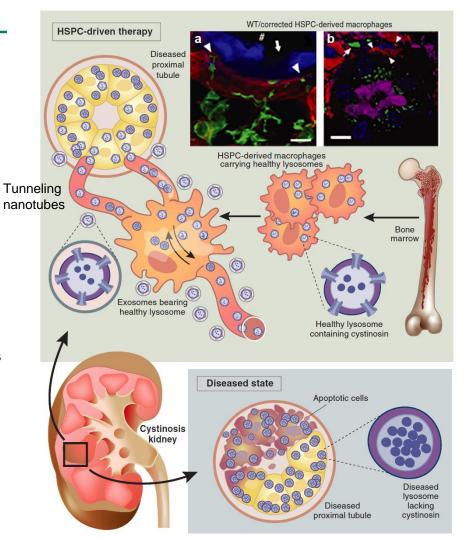
- · Perceived health
- Flourishing
- · Zest for life
- Balance



Effect on Positive Health Dimensions

Gene therapy

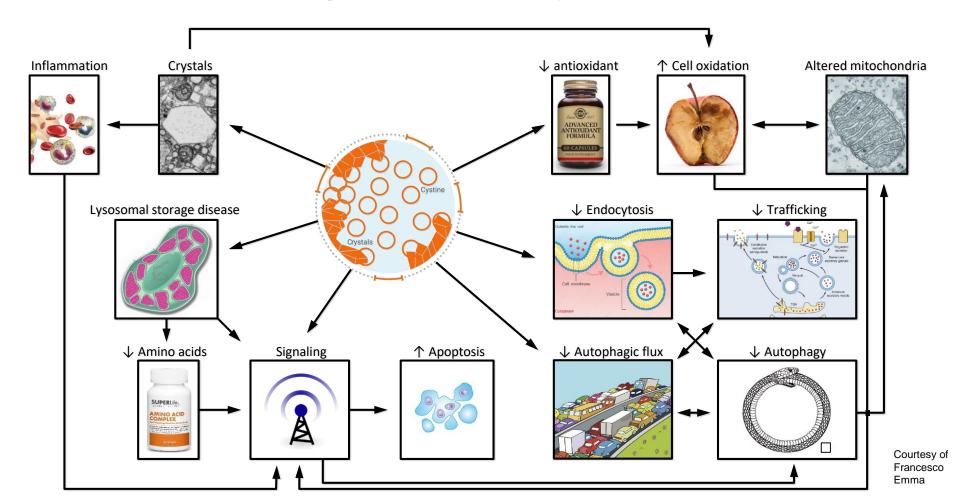
Hematopoietic Stem Cell Gene Therapy for Cystinosis: a phase 1/2 clinical trial


GENE THERAPY APPROACH

Targeted gene therapy for rare genetic kidney diseases

Veenita Khare¹ and Stephanie Cherqui¹

¹Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA


- Cystine accumulation => cell stress and subsequent apoptosis of proximal tubular cells (PTCs).
- Transplantation of CTNS-expressing HSPCs lead to their differentiation in macrophages in the kidney interstitium surrounding the proximal tubules.
- HSPC-derived macrophages generate multiple tubular protrusions (tunneling nanotubes (TNTs)) that can extend across the tubular basement membrane (TBM) of PTCs, facilitating the bidirectional transfer of lysosomes.
- Extracellular exosomes may serve as another mechanism for transferring cystinosin to injured kidney cells

Hematopoietic Stem Cell Gene Therapy for Cystinosis: a phase 1/2 clinical trial: results

- 6 adult cystinosis patients with kidney failure transplanted, 4 with kidney graft
- ✓ No unexpected adverse effects
- ✓ Low cystine levels in white blood cells
- ✓ Reduction of cystine crystals in the tissues
- ✓ Restauration of melatonin synthesis in the hair
- Long-term follow-up evaluation is ongoing
- Clinical trials in children prior to kidney failure are planed
- Prevention of myopathy and CNS complications?

Mechanisms of cell damage in nephropathic cystinosis => future approaches?

Ketogenic diet

Let Food Be Thy Medicine Potential of Dietary Management in Cystinosis

Bena Levtchenko 1 and Fanny Oliveira Arcolino 1,2

JASN 35: 1456-1459, 2024. doi: https://doi.org/10.1681/ASN.0000000509

"Let food be thy medicine" is a quote attributed to Hippocrates (400BC), who recognized fasting as the only effective therapy against epilepsy, suggesting that dietary interventions hold potential for treating human diseases. In 1921, Russel Wilder was the first to propose that a ketonegenerating diet could be as effective as fasting for treating epilepsy, and he coined the term "ketogenic diet." ¹

Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis

Ctns-/- rodents (mice and rats)

Fed ketogenic diets at specific timeframes

Followed for Fanconi syndrome Polyuria Low molecular weight proteinuria Glycosuria

Ctns -/- mice fed with ketogenic diet from 3 to 12 months of age

Nearly complete prevention of Fanconi syndrome

12-month BUN was higher in standard diet cystinotic vs wild-type mice, but not in mice on a ketogenic diet

Benefits were also seen in mice with proximal tubular dysfunction if they were fed a ketogenic diet at age 6 to 15 months

Microscopic Improvements:

Reduction of interstitial cell infiltration (CD3 and CD68 positive cells)

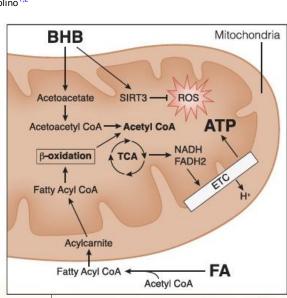
Reduction of interstitial fibrosis

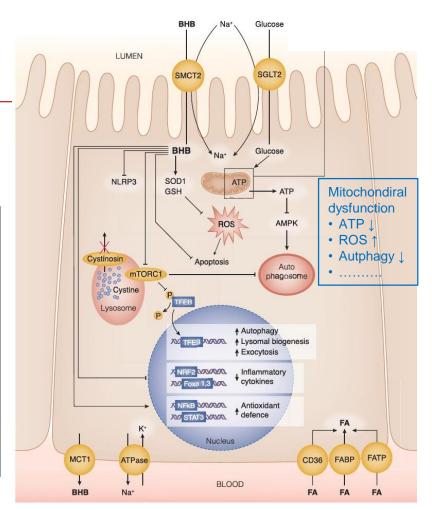
Reduction of apoptosis (cleaved caspase 3 levels) Indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression)

Although slightly less pronounced, these results were replicated in Ctns-/- rats fed with ketogenic diet from 2 to 8 months of life

Conclusions: These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diets.

Francesco Bellomo, Sara Pugliese, Sara Cairoli, et al. *Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis*. JASN 2024 Nov 1:35(11):1493-1506


Editorial


Let Food Be Thy Medicine


Potential of Dietary Management in Cystinosis

- ✓ ß-hydroxybutyrate (BHB)
- ✓ Faty acid (FA)
- ⇒ Acetyl CoA ↑, Krebs cycle ↑
- ⇒ mitochondrial
 - ATP production ↑
 - Oxidative metabolism ↑
 - Autophagy ↑
 - Exocytosis ↑
 - Inflammatory cytokines ↓

=> Kidney damage ↓

How to improve long-term outcome in patients with cystinosis?

- Early (neonatal) diagnosis and immediate start of cysteamine treatment
- Multi-disciplinary care: nutrition, psychosocial aspects, adherence support.
- Switch to DR cysteamine is associated with overall positive experience,
 better quality of life, and better adherence => better outcome
- Careful transition from pediatric to adult care
- New therapies are under way, but their efficiency still need to be proven

