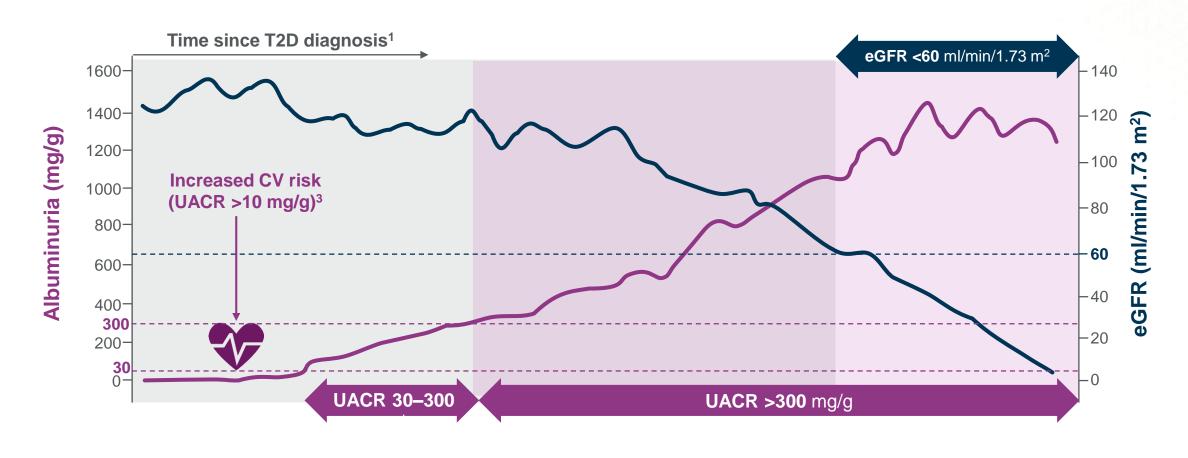
Transforming Heart and Kidney Care:

Kerendia in patients with CKD and T2D


Dr Anas Alyousef

Consultant, Internal Medicine and Nephrology Head of Nephrology & Dialysis Centers, Amiri Hospital President, Kuwait Nephrology Association

Albuminuria can often be detected before eGFR decline and increases CV risk^{1–3}

Late Diagnosis and CKD Progression in Patients With T2D Burden Both the Patient and the Healthcare System¹

Impact of CKD associated with T2D versus T2D alone

More
MI CASES^{2,a}

~2x

More HF CASES^{2,a}

~5x

Greater risk of HHF^{3,b}

 $\sim 3-6x$

More CV DEATHS^{4,c}

 $\sim 3x$

T2D and moderately to severely increased albuminuria versus T2D and normal albuminuria Higher rates of ER SERVICES^{5,d}

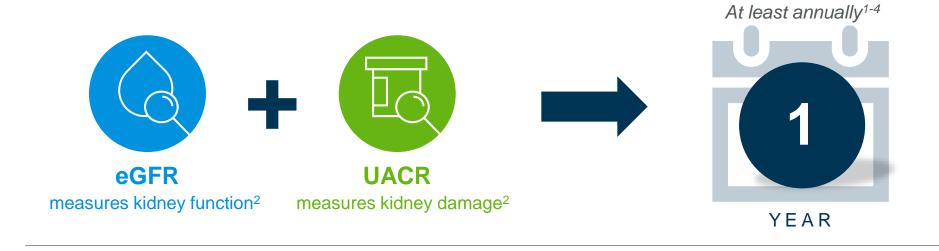
2-4%

Higher rates of INPATIENT ADMISSIONS^{5,d}

4-10%

Higher rates of **RECEIVING DIALYSIS**5,d

4-40x


Early intervention may help reduce downstream cardiorenal risks^{6,7}

^aData from a cross-sectional analysis of self-reported patient data collected between 2007-2012 from 2006 adult patients with T2D in NHANES.² Brandomized, double-blind, placebo-controlled SAVOR TIMI 53 trial conducted from 2010-2013 in 16,492 patients with T2D and a HbA1c of 6.5%-12.0% within 6 months of randomization and either a history of ASCVD or multiple CVD risk factors. Baseline UACR was available in 15,760 patients.³ "This study used data from NHANES III participants aged ≥20 years, who participants aged ≥20 years, who were included were those who had follow-up mortality data through 2006 (15,046 of 15,762 of NHANES III participants), 1430 (9,5%) of the 15,046 patients being selected for analysis. Patients being selected for analysis. Patients had T2D, were at least 18 years old, and were separated into normoalbuminuria (30-300 mg/g UACR), microalbuminuria (400 mg/g UACR), microalbuminuria (500 m

ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; CVD, cardiovascular disease; CVD, cardiovascular disease; ER, emergency room; HbA1c, glycated hemoglobin; HF, heart failure; HHF, hospitalization for heart failure; MI, myocardial infarction; NHANES, National Health and Nutritional Examination Survey; NHANES III; Third National Health and Nutritional Examination Survey; T2D, type 2 diabetes; UACR, urinary albumin-to-creatinine ratio.

Guidelines Recommend Both eGFR and UACR Testing at Least Annually in All Patients With T2D¹⁻⁴

ADA, KDIGO, and AACE Guidelines:

- ✓ Recommend using both eGFR and UACR to properly identify, stage, and monitor CKD in patients with T2D, as eGFR alone may miss the earlier stages of CKD¹-⁴
- ✓ Support routine eGFR and albuminuria screening to assess early CVD risk in patients with CKD associated with T2D¹-⁴

AACE, American Association of Clinical Endocrinology; ADA, American Diabetes Association; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; KDIGO, Kidney Disease Improving Global Outcomes; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio.

^{1.} American Diabetes Association. Section 11. *Diabetes Care*. 2023;46(Suppl. 1):S191-S202. 2. KDIGO. *Kidney Int Suppl*. 2013;3(1):1-150. 3. de Boer IH, et al. *Diabetes Care*. 2022;45(12):3075-3090. 4. Blonde L, et al. *Endocr Pract*. 2022;28(10):923-1049.

ADA 2023 Guidelines Recommend Reducing Very High Albuminuria Levels to Slow CKD Progression

TREATMENT RECOMMENDATION 11.6 (Level of Evidence: B)

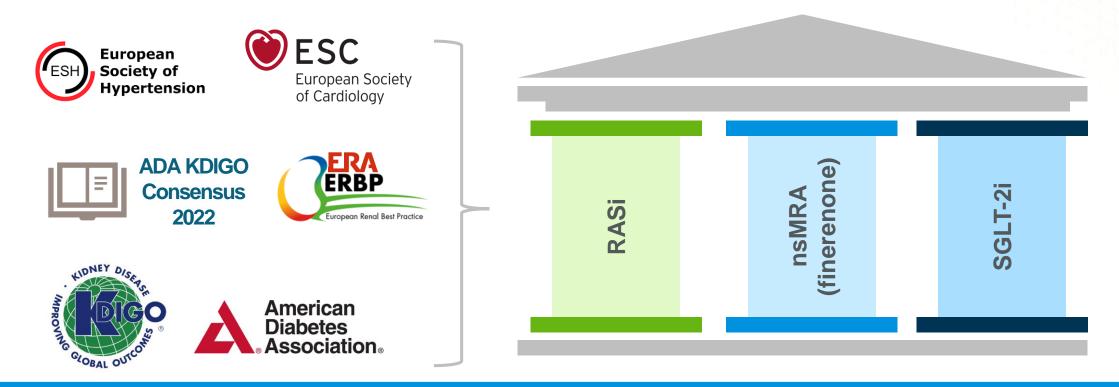
In people with CKD who have
≥300 mg/g urinary albumin,
a reduction of 30% or greater
in mg/g urinary albumin is
recommended to slow CKD progression

The ADA 2024 guidelines recognise the KDIGO recommendations for patient referral to nephrology by patient risk category

The ADA included a
KDIGO heatmap for risk of
CKD progression and referrals
in 2022– this has been
maintained in 2024^{1,2}

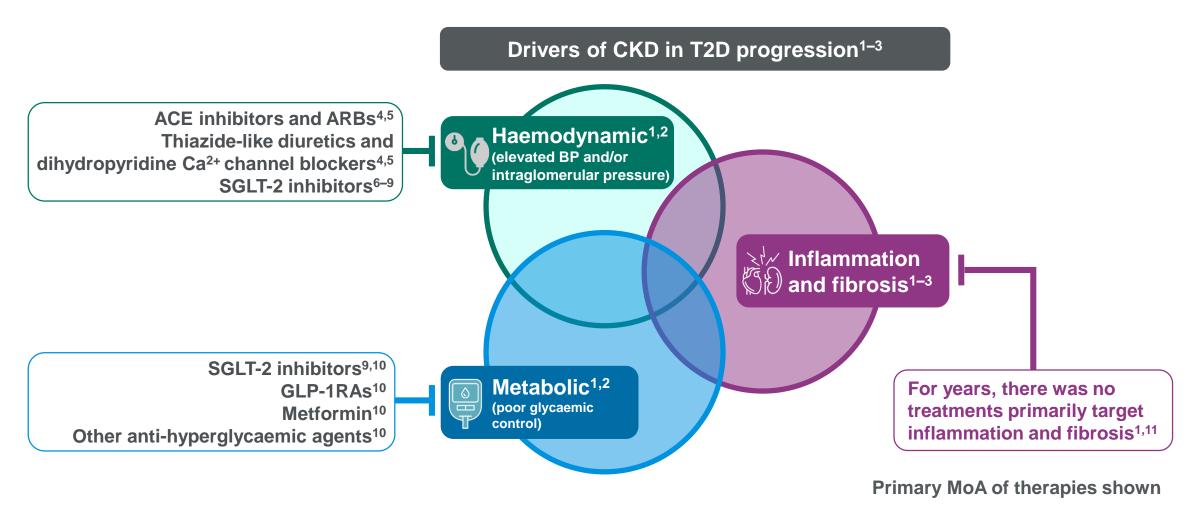
Individuals should be referred to a nephrologist if they have continuously increasing urinary albumin levels and/or decreasing eGFR and/or if the eGFR is <30 ml/min/1.73 m²

			Albuminuria categories Description and range			
				A1	A2	А3
CKD is classified based on: • Cause (C)				Normal to mildly increased	Moderately increased	Severely increased
• GFR (G) • Albuminuria (A)			<30 mg/g <3 mg/mmol	30–299 mg/g 3–29 mg/mmol	≥300 mg/g ≥30 mg/mmol	
(2	G1	Normal or high	≥90	Screen 1	Treat 1	Treat and refer 3
1/1.73 m	G2	Mildly decreased	60–89	Screen 1	Treat 1	Treat and refer
GFR categories (mL/min/1.73 m²) Description and range	G3a	Mildly to moderately decreased	45–59	Treat 1	Treat 2	Treat and refer
	G3b	Moderately to severely decreased	30–44	Treat 2	Treat and refer 3	Treat and refer 3
	G4	Severely decreased	15–29	Treat and refer*	Treat and refer*	Treat and refer 4+
	G5	Kidney failure	<15	Treat and refer 4+	Treat and refer 4+	Treat and refer 4+
Low risk (if no other markers of kidney disease, no CKD) High risk Moderately increased risk Very high risk						

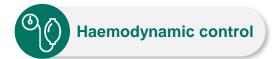

The GFR and albuminuria grid depicts the risk of CKD progression, frequency of visits and referral to nephrology according to GFR and albuminuria Please refer to the slide notes for additional information on the KDIGO heat map figure

^{*}Referring clinicians may wish to discuss with their nephrology service, depending on local arrangements regarding treating or referring

ADA, American Diabetes Association; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes

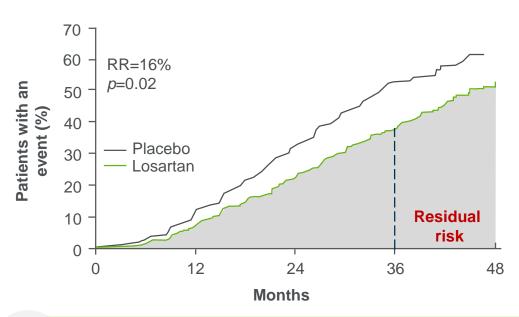

1. American Diabetes Association. *Diabetes Care* 2022;45(Suppl 1):S175–S184; 2. American Diabetes Association. *Diabetes Care* 2024;47(Suppl 1):S219–S230

Recent clinical guidelines for the management of CKD in patients with T2D recommend a combination of drug therapies to optimally reduce risks, 1-3 with finerenone recommended as a core treatment pillar4



To optimise risk reduction, the three-pillar drug therapy should be combined with glycaemic control, blood pressure control, lipid control, smoking cessation, proper nutrition and regular exercise⁴

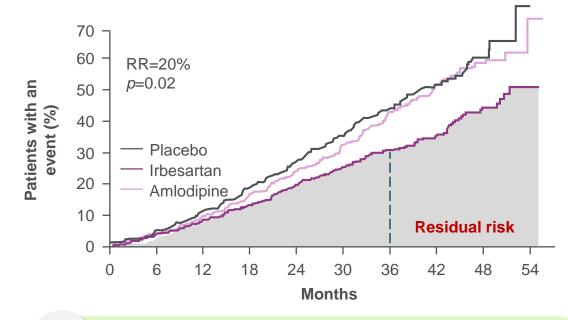
Current therapies primarily target haemodynamic and metabolic factors



- 1. Alicic RZ, et al. Clin J Am Soc Nephrol 2017;12:2032-2045; 2. Mora-Fernández C, et al. J Physiol 2014;18:3997; 3. Bauersachs J, et al. Hypertension 2015;65:257-263;
- 4. American Diabetes Association. Diabetes Association. Diabetes Association. Diabetes Care 2020;43:S135-151; 5. American Diabetes Association. Diabetes Care 2020;43:S111–1340; 6. Kidokoro K, et al. Circulation 2019:140;303–315;
- 7. Zelniker TA & Braunwald E. J Am Coll Cardiol 2018;72:1845–1855; 8. Heerspink HJ, et al. Circulation 2016;134:752–772; 9. Zelniker TA & Braunwald E. J Am Coll Cardiol 2020;75:422–434; 10. American Diabetes Association. Diabetes Care 2020;43:S98–S110; 11. Alicic RZ, et al. Adv Chronic Kidney Dis 2018;25:1941–191

Patients with T2D and advanced CKD are at risk of CKD progression when treated with current SoC

RENAAL: Losartan vs placebo¹



Patients with severely increased albuminuria: 100% Median UACR: 1249 mg/g

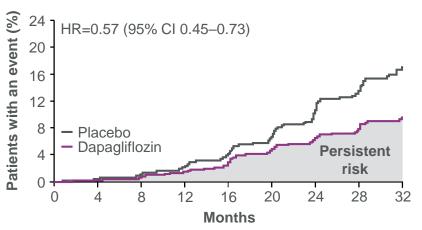
Primary composite endpoint:
Doubling of SCr, kidney failure or death

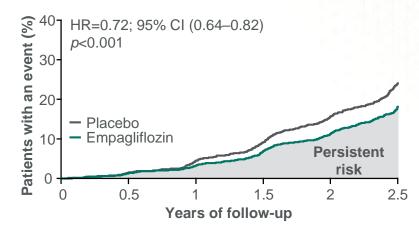
IDNT: Irbesartan vs amlodipine vs placebo²

Patients with severely increased albuminuria: 100% Median UACR: 1900 mg/g



Primary composite endpoint:Doubling of SCr, kidney failure or death


In addition, despite RAAS blockade and SGLT-2 inhibition, patients with T2D and advanced CKD are at persistent risk of CKD progression


CREDENCE: Canagliflozin vs placebo²

DAPA-CKD: Dapagliflozin vs placebo³

EMPA-KIDNEY: Empagliflozin vs placebo⁴

Median UACR: 927 mg/g

Primary composite outcome:

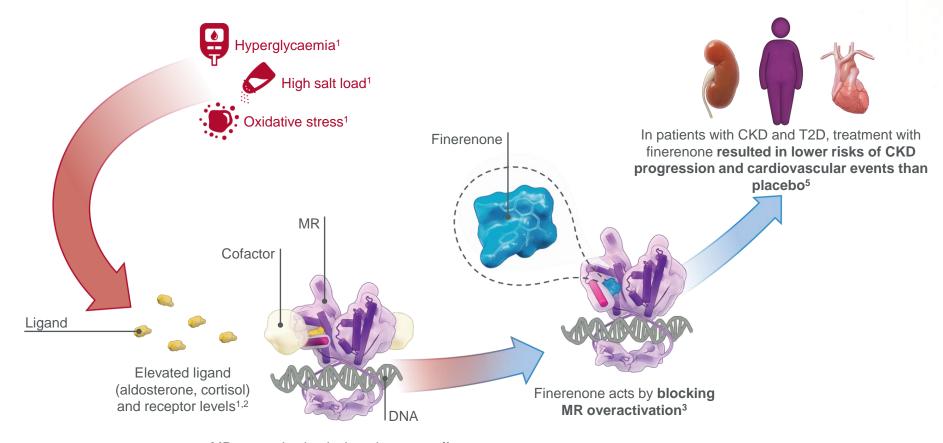
Kidney failure, doubling of SCr or death from kidney/CV causes

Median UACR: 949 mg/g

Secondary composite renal outcome:

Sustained ≥50% eGFR decline, ESKD or renal death

Median UACR: 329 mg/g


Primary cardiorenal outcome:

Sustained ≥40% decline in eGFR; sustained decline in eGFR to <10 ml/min/1.73 m², ESKD or renal/CV death

CKD, chronic kidney disease; CI, confidence interval; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HR, hazard ratio; RAAS, renin-angiotensin-aldosterone system; SCr, serum creatinine; SGLT-2i, sodium-glucose co-transporter-2 inhibitor; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio

- 1. American Diabetes Association. Diabetes Care 2022;45(Suppl 1):S175-S184; 2. Perkovic V, et al. N Engl J Med 2019;380:2295-2306;
- 3. Wheeler DC, et al. Lancet Diabetes Endocrinol 2021;9:22–31; 4. The EMPA-KIDNEY Collaborative Group. N Engl J Med 2023;388:117–127

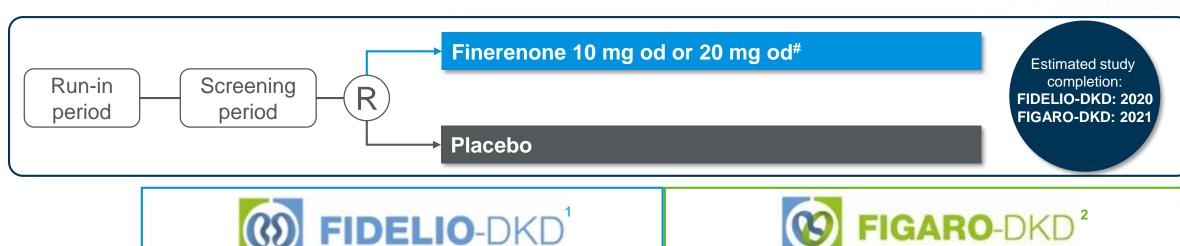
Finerenone, a novel, selective, nonsteroidal MRA, blocks MR overactivation

MR overactivation is thought to contribute to inflammation and fibrosis, and sodium retention in cardiorenal disease^{3,4}

Finerenone is approved by the FDA and is indicated to reduce the risk of sustained eGFR decline, ESKD, CV death, non-fatal MI, and HHF in adult patients with CKD associated with T2D. Finerenone is currently under review by other health authorities, including the EMA

^{1.} Buonafine M, et al. Am J Hypertens 2018;31:1165–1174; 2. Buglioni A, et al. Hypertension 2015;65:45–53; 3. Agarwal R, et al. Nephrol Dial Transplant 2020; doi: 10.1093/ndt/gfaa294;

^{4.} Khan NUA & Movahed A. Rev Cardiovasc Med 2004;5:71-81; 5. Bakris GL, et al. N Engl J Med 2020;383:2219-2229


Non-steroidal Vs Steroidal MRAs

There are several notable differences between finerenone and spironolactone

	What is different?	How? (finerenone v	s spironolactone)	Why?	
	Effect on inflammation and fibrosis (based on preclinical studies)	Greater reduction vs spironolactone ^{1,2}	Smaller reduction vs finerenone ^{1,2}	Distinct MR antagonist activity due to differences in: ^{3,4} • Structure	
Na ⁺ K ⁺	Effect on renal electrolyte disturbances (based on preclinical studies)	• Mode of		 Mode of binding Cofactor recruitment 	
	Risk of sexual side effects (gynaecomastia, erectile dysfunction, dysmenorrhoea)	No difference vs placebo ⁷	Increased risk vs placebo ⁸	MR selectivity:9-12 • Finerenone: High • Spironolactone: Low	
K+	Risk of hyperkalaemia	Lower risk* vs spironolactone ¹³ ; manageable with treatment interruption	Higher risk* vs finerenone ¹³ ; may be difficult to manage with treatment interruption	Differences in: • MR-mediated gene expression ^{1,2,5,6,14} • Half-life ¹³ • Presence/absence of active metabolites ¹⁵	
	Effect on SBP (reduction)	Moderate ¹³	High ¹³	Differences in: • Lipophilicity ⁶ • Polarity ⁶ • Ability to penetrate the CNS ^{6,16}	

^{*}Phase II clinical trial of finerenone vs spironolactone in patients with CKD (eGFR 30–60 ml/min/1.73 m²) and HFrEF See notes page for references

FIDELIO-DKD and FIGARO-DKD are investigating effects of finerenone on kidney and CV outcomes in patients with CKD and T2D

Clinical efficacy primary endpoint

Key secondary endpoints

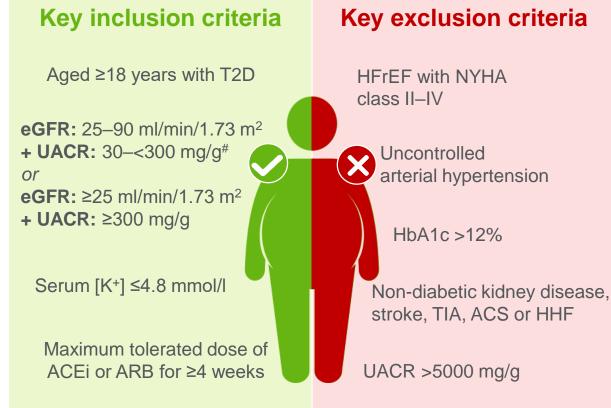
Composite endpoint: time to onset of kidney failure* or decrease of eGFR ≥40% from baseline or death due to kidney disease

Same as primary endpoint in FIGARO-DKD

Composite endpoint: time to CV death, non-fatal MI, non-fatal stroke or hospitalisation for HF

Same as primary endpoint in **FIDELIO-DKD**

FIDELITY, a prespecified pooled analysis of two phase III trials, included 13,026 patients with T2D and a wide spectrum of CKD

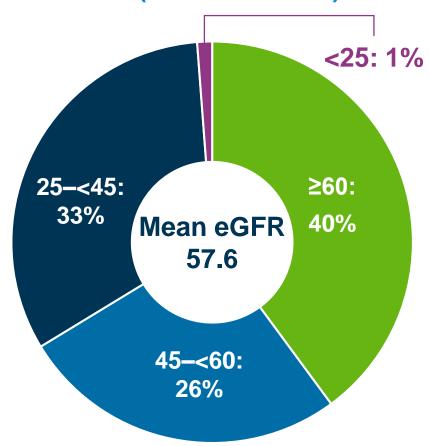

FIDELITY study design

Median follow-up: 3 years

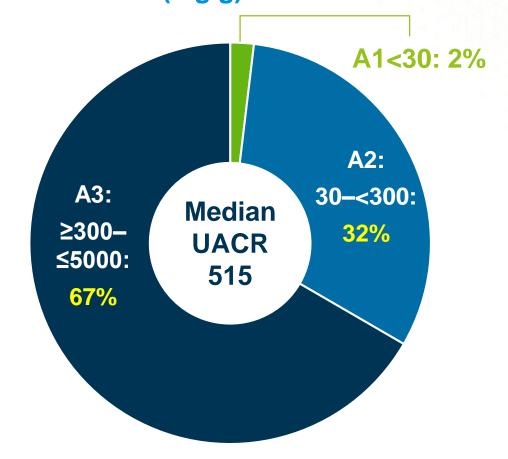
FIDELITY eligibility criteria

^{*}Prospective exclusion of 145 patients; #in FIDELIO-DKD, patients with moderately elevated albuminuria were required to also have diabetic retinopathy

ACEi, angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker; HbA1c, glycated haemoglobin; HFrEF, heart failure with reduced ejection fraction;


HHF, hospitalisation for heart failure; [K*], potassium concentration; NYHA, New York Heart Association; od, once daily; R, randomisation; TIA, transient ischaemic attack; UACR, urine albumin-to-creatinine ratio

Agarwal R, et al. Eur Heart J 2022;43:474–484


In FIDELITY, 40% of patients had albuminuric CKD with preserved kidney function (eGFR ≥60 ml/min/1.73 m²)

Baseline eGFR (ml/min/1.73 m²)*

Baseline UACR (mg/g)#

FIDELITY: Pooled analysis of FIDELIO-DKD and FIGARO-DKD trials (CKD stages 1 – 4)

FIDELITY

CV endpoints

Composite CV endpoint

Time to CV death, non-fatal MI, non-fatal stroke, or hospitalisation for HF

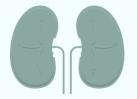
14% RRR

NNT=46 HR=0.86; *p*=0.0018

Hospitalisation for heart failure

22% RRR

HR=0.78; *p*=0.003


Kidney endpoints

Composite Kidney endpoint

Time to kidney failure, sustained ≥57% eGFR decline, or kidney-related death

23% RRR

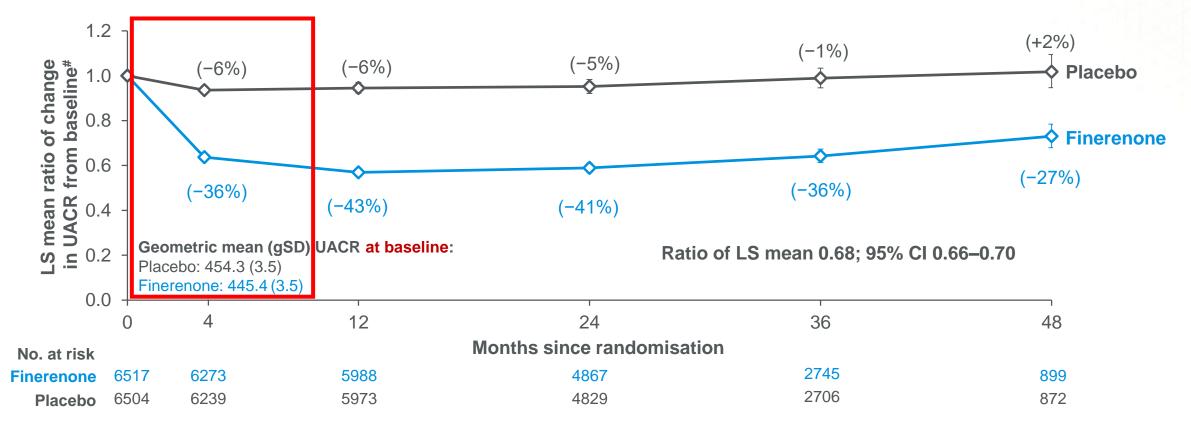
NNT=59 HR=0.77; *p*=0.0002

Dialysis

20% RRR

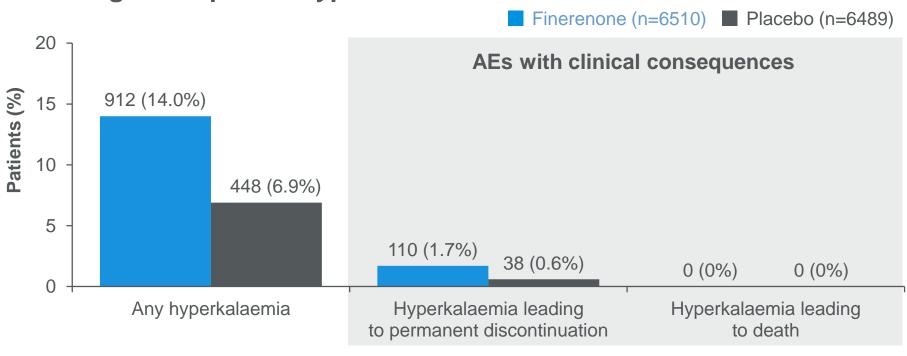
HR=0.80; *p*=0.04

Baseline characteristics		
Number of patients	13,026	
Gender (M/F)	70%/30%	
Age	65 years	
HBA1c	7.7%	
ВР	137/76 mmHg	
Prior HF	7.7%	
RAS inhibitors (ACEi/ARB)	99.8%	
Statins	72.2%	


Median follow-up: 3 Years

In FIDELITY, finerenone reduced UACR by 32% between baseline and month 4 versus placebo*

A lower mean UACR with finerenone versus placebo was maintained throughout the study


Data in parentheses are mean changes from baseline. *Full analysis set. Mixed model with factors treatment group, region, eGFR category at screening, type of albuminuria at screening, CV disease history, time, treatment*time, study, study*treatment, log-transformed baseline value nested within type of albuminuria at screening and log-transformed baseline value*time as covariate. Separate unstructured covariance patterns are estimated for each treatment group; #data are LS mean ± SD gSD, geometric standard deviation

Finerenone increased hyperkalaemia, but the clinical impact was minimal¹

Investigator-reported hyperkalaemia adverse events^{1*}

Max difference in mean serum [K+] between finerenone and placebo¹

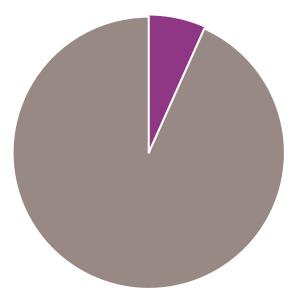
Hyperkalaemia risk factors:²
High baseline [K⁺], lower eGFR,
higher UACR, ß-blocker use

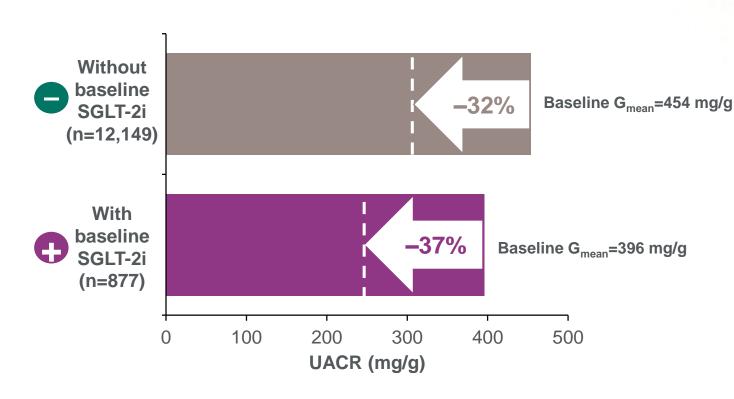
With a robust [K+] management strategy guided by regular serum [K+] monitoring,³ there were no hyperkalaemia-related deaths in ~13,000 people over <u>3 years' median follow-up</u>

^{*}Investigator-reported AEs using the MedDRA preferred terms 'hyperkalaemia' and 'blood potassium increased' AE, adverse events; MedDRA, Medical Dictionary for Regulatory Activities

^{1.} Agarwal R, et al. Eur Heart J 2022;43:474–484; 2. Agarwal R, et al. J Am Soc Nephrol 2022;33:225–237;

^{3.} Bakris GL, et al. N Engl J Med 2020;383:2219-2229; Supplementary appendix


In the FIDELITY SGLT-2i subgroup analysis, finerenone improved UACR in patients with CKD and T2D irrespective of baseline SGLT-2i use^{1,2}



SGLT-2i use at baseline

Reduction in UACR (%) with finerenone vs placebo

Finerenone initiators in US clinical practice: A FOUNTAIN report

To describe patient characteristics and assess the <u>early</u> safety and effectiveness of finerenone used for the treatment of patients with CKD and T2D in routine clinical practice

Data sources

US database*

Study period

July 2021-August 2023

Patients

Adults with CKD# and T2D‡ who **initiated treatment** with finerenone **within the study period**

Design^{1,2}

Observational, retrospective, longitudinal single-arm cohort study

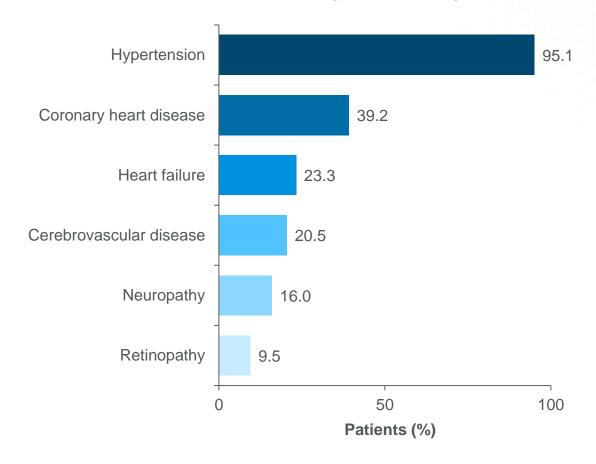
Key outcomes

Baseline characteristics including demographics, comorbidities and comedications

Incidence rates of hyperkalaemia

Changes in UACR over time

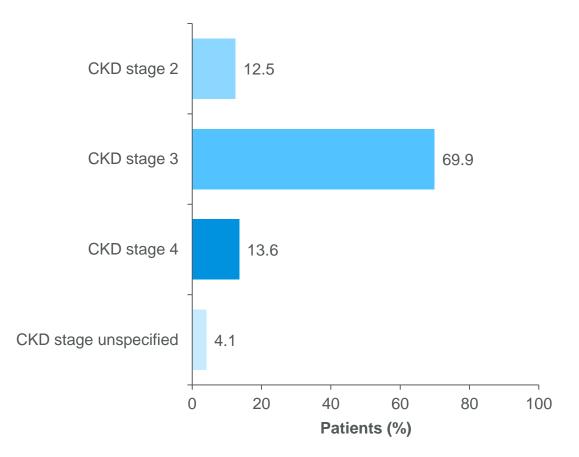
The data shown here should not be compared with RCT data due to differences in study designs and patient populations
*OM1 RWDC; #defined as either having one diagnostic code for CKD stage 2–4 or unspecified stage, two eGFR measurements of 15–60 ml/min/1.73 m² separated by at least 90 days, or two UACR measurements >30 mg/g separated by at least 90 days; ‡T2D was defined as having a diagnostic code for T2D
RWDC. Real-World Data Cloud™

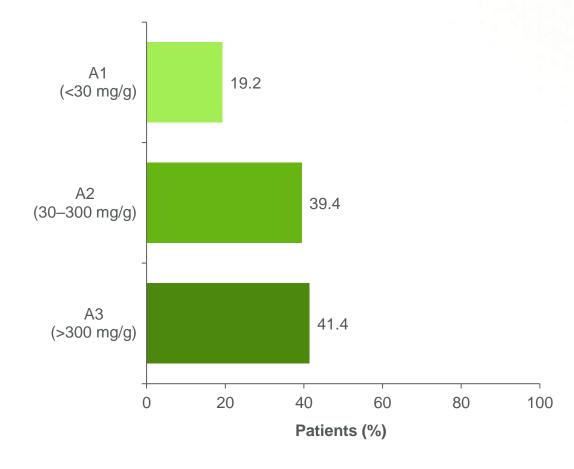

Comorbidities: Nearly all patients with CKD and T2D initiating finerenone in US clinical practice had hypertension

Baseline demographics

Characteristic	Finerenone (N=15,948)
Female, n (%)	7036 (44.1)
Age, mean years ± SD	70.3 (10.1)
Race/Ethnic group*, n (%) White Black/African American Asian Other	3874 (69.5) 872 (15.6) 465 (8.3) 365 (6.5)
Calendar year of index, n (%) 2021 (July–December) 2022 2023 (January–August)	1061 (6.7) 7888 (49.5) 6999 (43.9)

Baseline comorbidities (N=15,948)




Comorbidities: In clinical practice, finerenone is predominantly used in CKD stage 3 and albuminuria categories A2 and A3

CKD stage (n=14,566)*

Albuminuria categories (n=3758)#

Comedication: Finerenone is initiated in combination with other treatment options, including RASi, SGLT-2i,GLP-1RA and Insulin

patients initiating finerenone used a RASi during the baseline period

patients initiating finerenone used an SGLT-2i during the baseline period

patients initiating finerenone used a GLP-1RA during the baseline period

patients initiating finerenone used insulin during the baseline period

Up-titration to the target dose* of finerenone appears to be suboptimal in clinical practice¹

Prescription at index (N=15,948)

patients are prescribed 10 mg

After 12 months (n=2212)

patients are prescribed 10 mg

patients are prescribed 20 mg

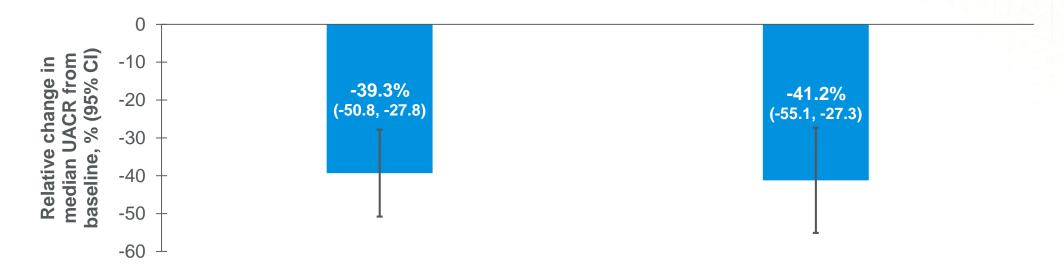
patients are prescribed 20 mg

^{*}The recommended target dose of finerenone is 20 mg once daily, and this is also the recommended starting dose for patients with eGFR ≥60 ml/min/1.73 m². For patients with eGFR ≥25–<60 ml/min/1.73 m², the recommended starting dose is 10 mg once daily²

^{1.} Kovesdy C, et al. ERA 2024; poster (abstract 2022); 2. Bayer AG. KERENDIA® (finerenone) Prescribing Information. 2021. https://labeling.bayerhealthcare.com/html/products/pi/Kerendia_Pl.pdf [accessed 8 Apr 2024].

In clinical practice, the observed incidence of hyperkalaemia after finerenone initiation appeared low

Among 15,948 initiators of finerenone, **1.32%** (n=210) had **hyperkalaemia**[#] during follow-up


Among 15,948 initiators of finerenone, **7** patients (0.04%) had **hyperkalaemia associated with a hospitalisation**[‡] during follow-up

^{*}Events per 100 PY; #hyperkalaemia is defined as i) a hospitalisation or emergency department visit with a diagnosis code for hyperkalaemia, or ii) at least 2 serum [K+] laboratory values >5.5 mmol/l, as follows: two inpatient serum [K+] values >5.5 mmol/l on the inpatient record within 7 days or one serum [K+] value >5.5 mmol/l in a non-hospitalised setting and another value in any setting within 7 days, or iii) a serum [K+] laboratory value >5.5 mmol/l in any setting and the occurrence of an inpatient or outpatient diagnosis code for hyperkalaemia within 3 days; †hyperkalaemia associated with a hospitalisation: a medical diagnosis code or increased serum [K+] (>5.5 mmol/l) 7 days prior to or after a hospitalisation record IR, incidence rate: PY, patient-years

Finerenone was associated with a 39% relative reduction in UACR after 4 months, which was sustained at 12 months (41%)

Relative change in median UACR from baseline

	Baseline	Month 4	Month 12
Number of patients	2137	1617	900
UACR, mg/g, median (Q1–Q3)	211 (56–750)	128 (31–551)	124 (26–544)

International Guidelines

Key updates for the treatment of patients with CKD in T2D

Finerenone is recommended to slow CKD progression and reduce CV events in patients with CKD and T2D

AACE 2022¹

KDIGO 2022²

ADA 2023³

ESH 2023⁴

ACEi/ **ARB**

Recommended for persons with albuminuria (T1D or T2D) to reduce risk of DKD or CKD in DM progression

Recommended in patients with diabetes, hypertension and albuminuria, and these medications should be titrated to the highest approved dose that is tolerated

Strongly recommended in patients with UACR ≥300 mg/g and/or eGFR <60 ml/min/1.73 m^{2*} Recommended in patients with UACR 30-299 mg/g*

Antihypertensive treatment in T2D is recommended for macrovascular and microvascular protection

Recommended for patients with **CKD** and UACR >30 mg/g, titrated to maximum tolerated dose

Recommended for persons with T2D, an eGFR ≥25 ml/min/1.73 m², normal serum [K+], and albuminuria (UACR ≥30 mg/g) despite a maximum tolerated dose of a RASi

A **nsMRA** with proven kidney and CV benefits is suggested in patients with T2D, eGFR ≥25 ml/min/1.73 m², normal serum [K+] and albuminuria (≥30 mg/g) levels despite maximum tolerated dose of RASi

Recommended for patients with CKD and albuminuria who are at increased risk for CV events or **CKD** progression to reduce CKD progression and CV events

Finerenone is recommended for patients with CKD and albuminuria associated with **T2D** if eGFR ≥25 ml/min/1.73² and serum [K⁺] <5.0 mmol/I - the drug has a BP lowering effect

Recommended as foundational therapy for persons with T2D and CKD with eGFR ≥20 ml/min/1.73m² to reduce progression of CKD and risk of CV disease

Recommended in **combination** with metformin in patients with T2D, CKD and an eGFR ≥20 ml/min/1.73 m²

Recommended for patients with an eGFR ≥20 ml/min/1.73 m² and UACR ≥200 mg/g to reduce risk of CKD progression and CV events#

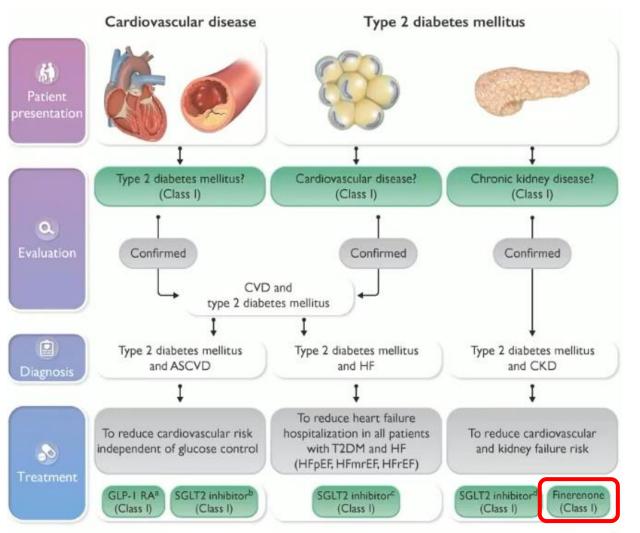
Recommended to reduce cardiac and kidney events in T2D - they have a BP lowering effect

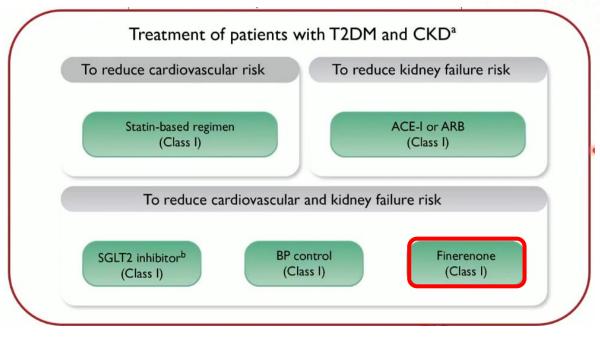
Recommended for patients with diabetic and non-diabetic nephropathies CKD if eGFR is at least 20 or 25 ml/min/1.732 *

Recommended for persons with T2D and DKD or CKD in diabetes with eGFR ≥15 ml/min/1.73 m² for glycaemic control and to reduce risk of ASCVD and progression of albuminuria

A long-acting GLP-1RA is recommended in patients with T2D and CKD who have not achieved individual glycaemic targets despite use of metformin/SGLT-2i or are unable to use those therapies

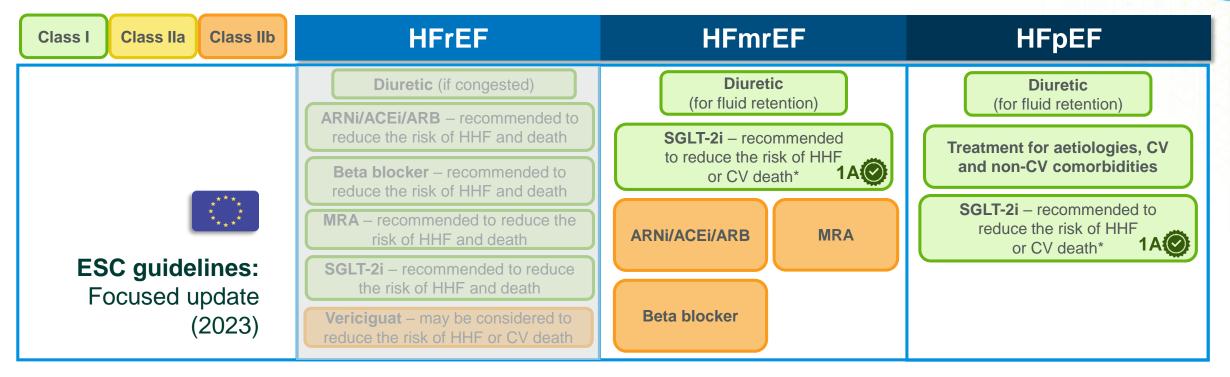
Should be considered for


additional CV risk reduction:


*In non-pregnant patients with diabetes and hypertension; #for patients with T2D and diabetic kidney disease; ‡in patients with T2D and diabetic kidney disease, with eGFR ≥25 ml/min/1.73 m² 1. Blonde L, et al. Endocr Pract 2022; 28:923-1049; 2. KDIGO. Kidney Int 2022;102:S1-S128; 3. American Diabetes Association. Diabetes Care 2023;46(Suppl 1):S191-S202;

4. Mancia G, et al. J Hypertens 2023: doi:10.1097/HJH.00000000003480

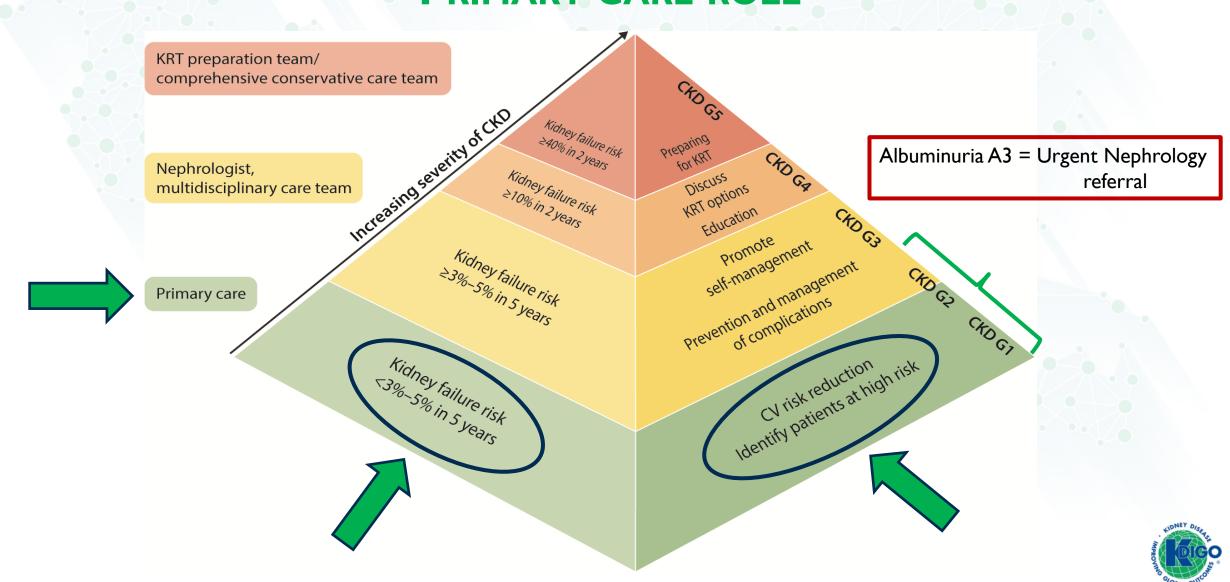
Key updates in the 2023 ESC guidelines for the management of patients with CKD and T2D


All therapies are recommended independent of glucose control and in addition to standard of care

aA statinbased regimen reduces CV risk in CKD while ACE-I or ARBs reduce kidney failure risk; SGLT2 inhibitors, BP control, and finerenone reduce both CV risk and kidney failure risk. SGLT2 inhibitors, RAS inhibitors, and finerenone are particularly effective at reducing risk of kidney failure when albuminuria is present [e.g. UACR ≥3 mg/mmol (30 mg/g); stage A2 and A3]. bCanagliflozin, empagliflozin, or dapagliflozin

Marx N. et al. Eur Heart J 2023:00:1–98

2023 focused update of the 2021 ESC guidelines for the management of HF


Prevention of HF in CKD and T2D

Finerenone – in patients with CKD and T2D recommended to reduce the risk of HHF

SGLT-2i – in patients with CKD and T2D recommended to reduce the risk of HHF or CV death*

^{*}Dapagliflozin and empagliflozin

MANAGEMENT OF CKD "PRIMARY CARE ROLE"

Prior to initiation of finerenone treatment, serum [K+] and eGFR must be measured

If serum [K⁺] ≤5.0 mmol/l*

Eman's serum [K+]: 4.3 mmol/l

If eGFR ≥25 ml/min/1.73 m²

Eman's eGFR: 54 ml/min/1.73 m²

 $\langle \rangle$

Eman can initiate treatment with finerenone

Starting dose:

10 111

10 mg

Target and maximum recommended dose:

(**if eGFR is <60** ml/min/1.73 m²)

20 mg

od

(and starting dose if eGFR ≥60 ml/min/1.73 m²)

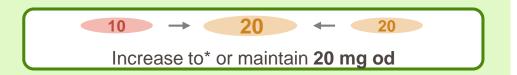
Treatment can be **maintained** in patients with an **eGFR** ≥15 ml/min/1.73 m^{2#}

*If serum [K+] is >4.8–5.0, initiation of finerenone may be considered with additional serum potassium monitoring within the first 4 weeks based on patient characteristics and serum [K+]; #if eGFR falls below 15 ml/min/1.73 m², treatment should be discontinued

Bayer AG. KERENDIA® (finerenone) Summary of Product Characteristics. 2023. https://www.ema.europa.eu/documents/product-information/kerendia-epar-product-information-en.pdf [accessed 1 Mar 2023]

After treatment initiation, eGFR and serum [K+] should be measured periodically and the dose of finerenone should be adjusted accordingly

eGFR after 1 month


Current serum [K+] (mmol/I)

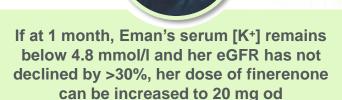
Finerenone dose adjustment

eGFR decline <30%

≤4.8

>4.8-5.5

Maintain current dose



>5.5

Withhold treatment

Restart at 10 mg od when serum [K+] is ≤5.0 mmol/l

If Eman's serum [K+] increases to
5.0 mmol/l, her dose of finerenone should
be maintained at 20 mg od

At follow-up, if Eman's serum [K+] has increased to 5.6 mmol/l, treatment with finerenone should be withheld

Serum [K+] and eGFR should be remeasured 4 weeks after initiation or after restarting finerenone treatment, or after an increase in dose#

*Maintain 10 mg od if eGFR has decreased by >30% compared with the previous measurement; #Thereafter, serum [K+] should be remeasured periodically and as needed based on patient characteristics and serum [K+]

Bayer AG. KERENDIA® (finerenone) Summary of Product Characteristics. 2023. https://www.ema.europa.eu/documents/product-information/kerendia-epar-product-information_en.pdf [accessed 1 Mar 2023]

Bayer Middle East FZE

Dubai Science Park – North Tower (13th. Floor)

P.O. Box: 500829

Dubai, United Arab Emirates

Phone: +971 4 4452700

Web: https://middleeast.bayer.com

* For Medical Inquiries: med-info.me@bayer.com

** For Safety Reporting: www.safetrack-public.bayer.com pv.me@bayer.com

*** Information sent to the above contact details is subject to Bayer Privacy Statement for Pharmacovigilance Data (https://www.bayer.com/en/privacy-statement-pv) and might be transferred outside your country