Rare Diseases in Nephrology: Challenges in Diagnosis and Treatment

Dieter Haffner, M.D.

Professor and Chairman

Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases

Center for Rare Kidney Diseases

Medizinische Hochschule Hannover

Disclosures

Dieter Haffner has disclosed the following financial relationships.

Research grants

Chiesi, Cystinosis Research Foundation, Else Kröner-Fresenius-Stiftung,
 German Research Foundation, and Kyowa Kirin

Speaker fees/consultancy

 Advicenne, Biologix, Chiesi, Kyowa Kirin, Medison Pharma, Recordati Rare Diseases, and Ultragenyx

Rare kidney diseases

- In the EU, a rare disease is one that affects no more than 1 person in 2000.
- Over 6000 distinct rare diseasers are known.

- 512 Million people living in the EU including
 - 36 Million with rare diseases
 - 2 Million affected by rare kidney conditions
 - 300.000 children with rare kidney diseases
 - => significant disease burden and risk for kidney failure

Disease / Mechanism specific drugs

- Biologicals including monoclonal antibodies (mABs)
- Small compounds with novel actions
 e.g. selective complement inhibitors
- Gene therapies
- siRNA*: gene expression ↓

^{*} Small interfering RNA = silencing RNA

Novel Drug Therapies Under Development

clinicaltrials.gov search 07/2024:

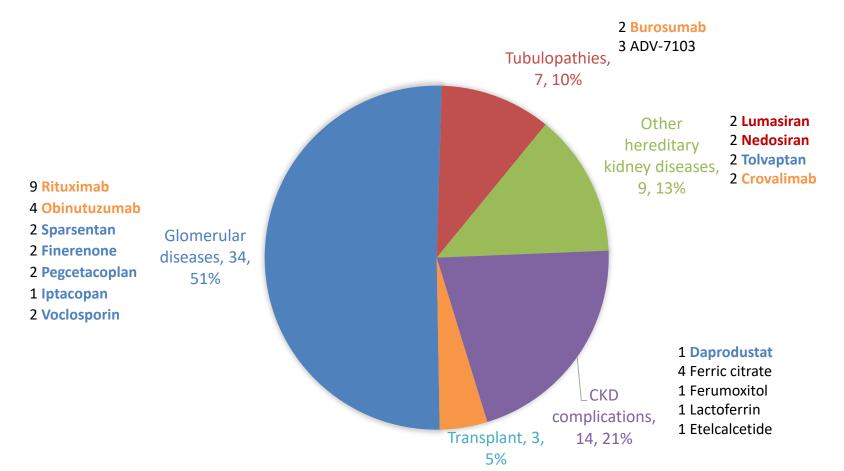
Currently active drug studies on kidney diseases including children

67 trials identified

60% children inclusive

4 Phase 1

16 Phase 2


3 Phase 2/3

39 Phase 3

5 Phase 4

Novel Drug Therapies Under Development

New Opportunities in Rare Kidney Diseases

Idiopathic nephrotic syndrome, Glomerulopathies Alport syndrome IgA nephritis; C3 glomerulopathy

Tubulopathies

Thrombotic microangiopathies

Atypical hemolytic uremic syndrome

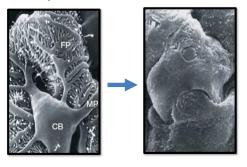
Primary hyperoxaluria

Metabolic nephropathies

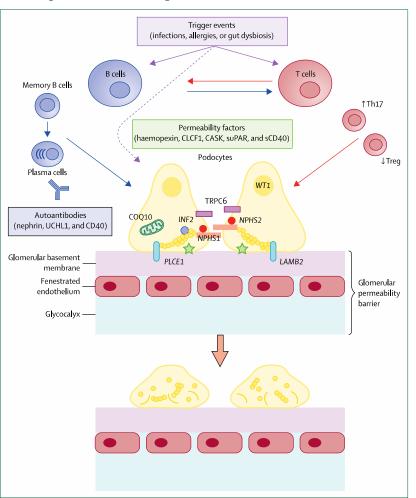
(Nephropathic cystinosis)

Renal or urinary tract malformations

Familial cystic renal diseases

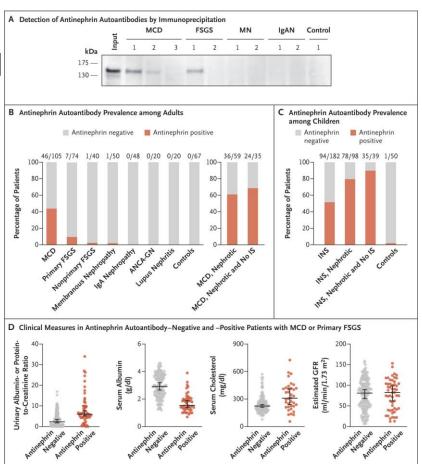

Non-disease-specific measures to slow down the progression of CKD: SGLT2i, Finerone

Idiopathic nephrotic syndrome in children


- The most frequent pediatric glomerular disease
- Incidence: 2.92 per 100,000 children per year globally
- 85-90% are steroid-sensitive (SSNS)
 - Minimal change disease
 - Foot process effacement
 - 70-80% at least one relapse
 - 50% show FRNS or SDNS

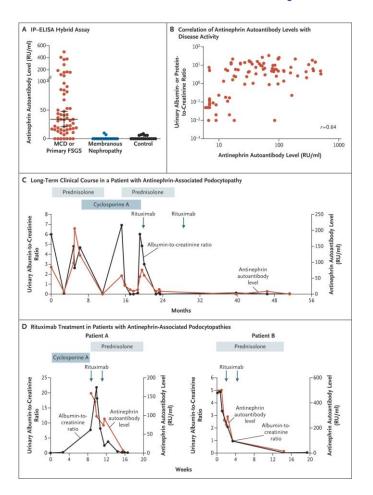
- 5-10% are steroid-resistant (SRNS)
 - FSGS, MCD, DMS, MN...
 - 30% have genetic forms
- Challenging treatment
 High treatment associated morbidity

Pathophysiology of nephrotic syndrome: Immune system vs. genetic

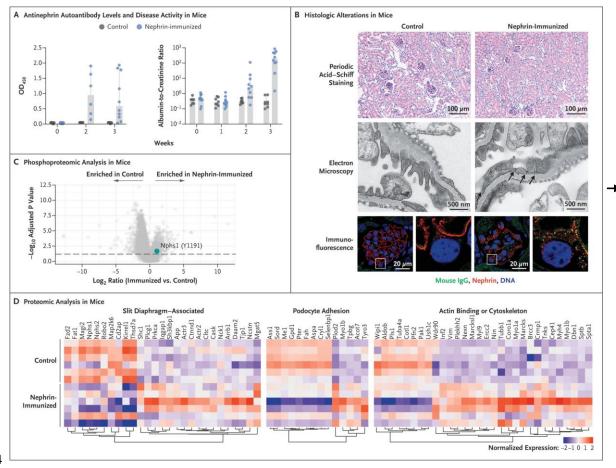

Prevalence of Antinephrin Autoantibodies in Patients with Proteinuric Glomerular Diseases and in Controls

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Autoantibodies Targeting Nephrin in Podocytopathies

F.E. Hengel, S. Dehde, M. Lassé, G. Zahner, L. Seifert, A. Schnarre, O. Kretz, F. Demir, H.O. Pinnschmidt, F. Grahammer, R. Lucas, L.M. Mehner, T. Zimmermann, A.M. Billing, J. Oh, A. Mitrotti, P. Pontrelli, H. Debiec, C. Dossier, M. Colucci, F. Emma, W.E. Smoyer, A. Weins, F. Schaefer, N. Alachkar, A. Diemert, J. Hogan, E. Hoxha, T. Wiech, M.M. Rinschen, P. Ronco, M. Vivarelli, L. Gesualdo, N.M. Tomas, and T.B. Huber, for the International Society of Glomerular Disease



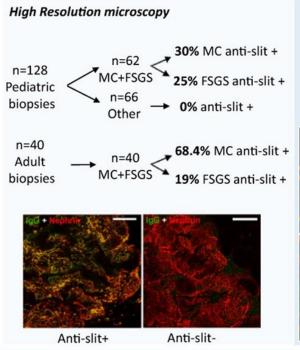
Hengel et al, N Engl J 2024

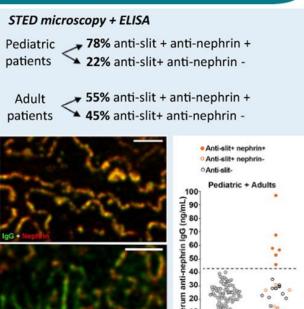
Quantitative Measurement of Antinephrin Autoantibodies

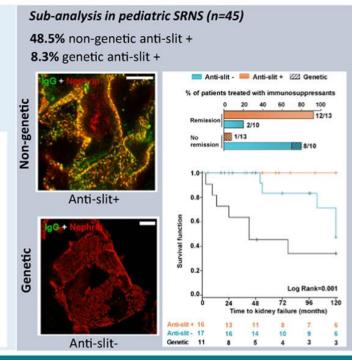
Induction of an MCD-like Phenotype and Rapid-Onset Nephrotic Syndrome in Mice

Foot process
effacement
Mouse IgG at

the slit diaphram


Nephrin endocytosis


Anti-slit diaphragm antibodies on kidney biopsy identify pediatric patients with steroid-resistant nephrotic syndrome responsive to


kidney

second-line immunosuppressants

Raglianti V et al, 2024

CONCLUSION

Detection of anti-slit antibodies represents a novel tool for personalized management, by allowing the identification of patients more likely to respond to immunosuppressants and have a better longterm prognosis, i.e. an autoimmune podocytopathy.

10 MC+13 FSGS

n=23

Controls

Future approach in children with "idiopathic nephrotic syndrome"?

- IP-ELISA hybrid assay pos. = Nephrin autoantibody mediated NS
 => SSNS (MCD) => steroids; no response => second line therapies
 IP-ELISA hybrid assay neg. => give steroids a try or biopsy
- 2. SRNS & anti-slit antibody pos. => second line therapies (CNI, RTX)
- Gene panel: Genetic NS => symptomatic treatment (RAASi)

SGLT2-inhibitors in children with CKD - Offical waivers by the EMA: "likely to be unsafe" & "no benefit over existing treatments"

EMA/PDCO/800821/2018 London, 1 February 2019

Opinion of the Paediatric Committee on the granting of a product-specific waiver

EMEA-000828-PIP06-18

Scope of the application

Active substance(s):

Empagliflozin

1. Waiver

1.1. Condition:

Treatment of chronic kidney disease

The waiver applies to:

- all subsets of the paediatric population from birth to less than 18 years of age;
- film-coated tablet, oral use;
- on the grounds that the specific medicinal product does not represent a significant therapeutic benefit over existing treatments.

EMA/PDCO/529858/2018 London, 19 October 2018

Opinion of the Paediatric Committee on the granting of a product-specific waiver

EMEA-000694-PIP04-18

Scope of the application

Active substance(s):

Dapagliflozin

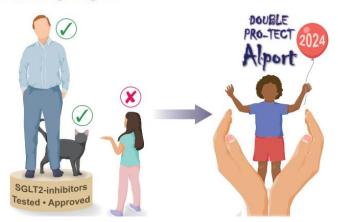
Invented name:

Forxiga

Condition(s):

Treatment of chronic kidney disease

to grant a product-specific waiver for all subsets of the paediatric population and the above mentioned condition in accordance with Article 11(1)(a) of said Regulation, on the grounds that the specific medicinal product is likely to be <u>unsafe</u> in part or all of the paediatric population and with Article 11(1)(c) of said Regulation, on the grounds that the specific medicinal product does not represent a significant therapeutic benefit over existing treatments for paediatric patients.


https://doi.org/10.1093/ndt/gfae029

Advance access publication date: 2 February 2024

SGLT2 inhibitors: approved for adults and cats but not for children with CKD

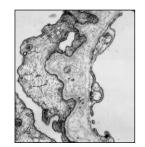
Oliver Gross 101 Dieter Haffner 102, Franz Schaefer and Lutz T. Weber

⁴Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany Correspondence to: Oliver Gross; E-mail: gross.oliver@med.uni-goettingen.de

¹Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany

²Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany

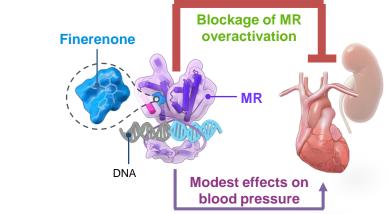
³Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany

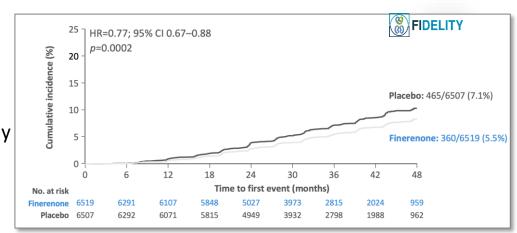


DOUBLE PRO-TECT Alport

A confirmatory, multicenter, randomized, double-blind, placebo-controlled clinical trial to assess the effect of Dapagliflozin on the progression of CKD in adolescent and young adult patients with Alport syndrome

recruiting





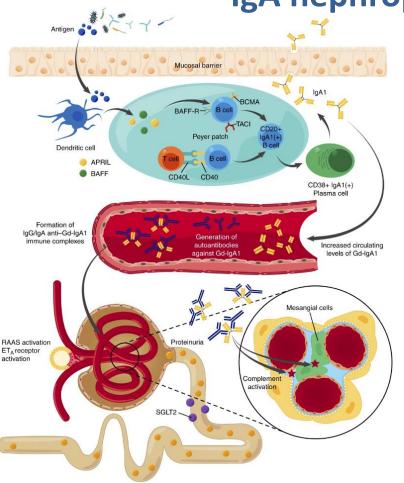
Prof. Dr. Oliver Gross Nephrologie und Rheumatologie Universitätsmedizin Göttingen gross.oliver@med.uni-goettingen.de

Finerenone: Selective Nonsteroidal Mineralcorticoid Receptor (MR) Antagonist

- Finerenone blocks mineralcorticoid receptor (MR) overactivation, which contributes to inflammation and fibrosis, leading to kidney and CV damage
- ✓ Unique binding mechanism and distribution vs steroidal MRAs => high potency and selectivity
- \checkmark Trials in <u>adults</u> with diabetic nephropathy:
 - eGFR Loss Endpoint reduced by 23%
 - minimal effect on serum potassium
- Trials in adults with non-diabetic CKD underway

FIONA: Global RCT on Finerenone in children

- ✓ Age: 6 months 18 years
- ✓ CKD stage 1-3
- ✓ uPCR > 0.5 g/g under maximum tolerable RASi, e.g. pts. with Alport syndrome


6 months Finerenone vs. Placebo (2:1 randomization)
Primary endpoint: proteinuria reduction after 6 months
18 months open-label extension

Objective: 219 randomized patients

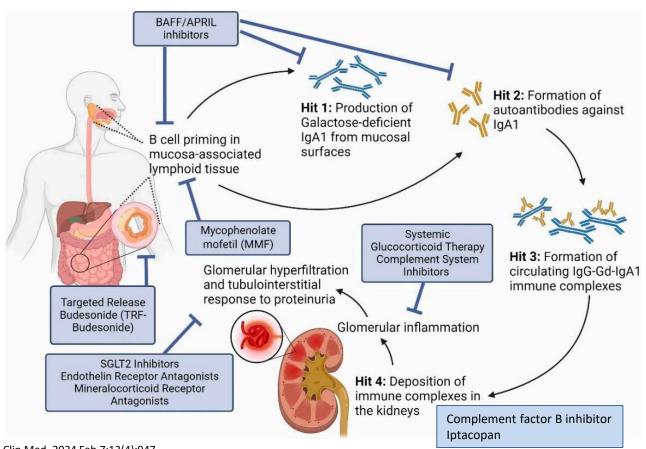
>100 pediatric nephrology centers worldwide Participation of many european centers Recruiting started

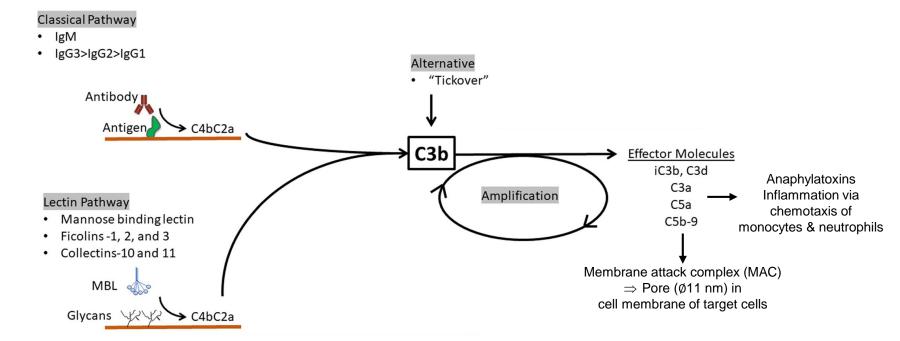
IgA nephropathy - 4 HIT model

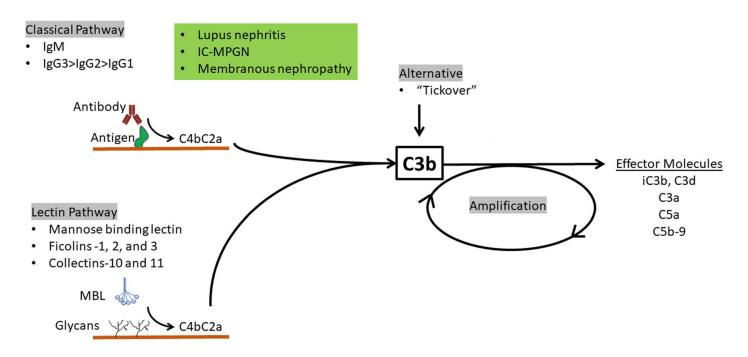
- ✓ Antigens
- ✓ B cell priming to mucosa associated lymphoid tissues
- **HIT 1:** Production of Galactose-deficient IgA1 from mucosal surfaces
- HIT 2: Formation of autoantibodies against IgA1
- HIT 3: Formation of circulating IgG-Gd-IgA1 immune complexes
- HIT 4: RAAS activation

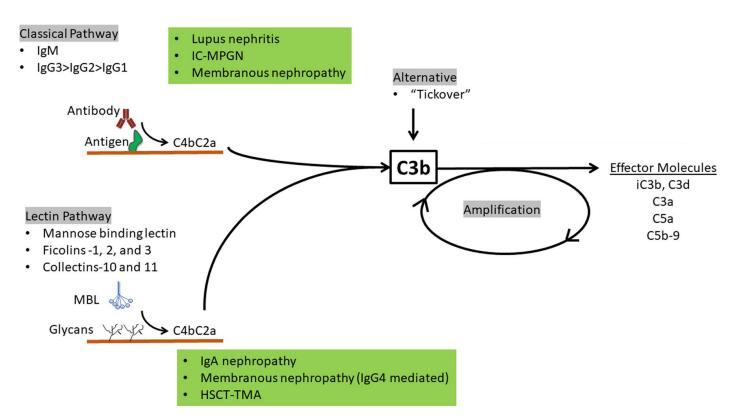
 Endothelin A receptor activation

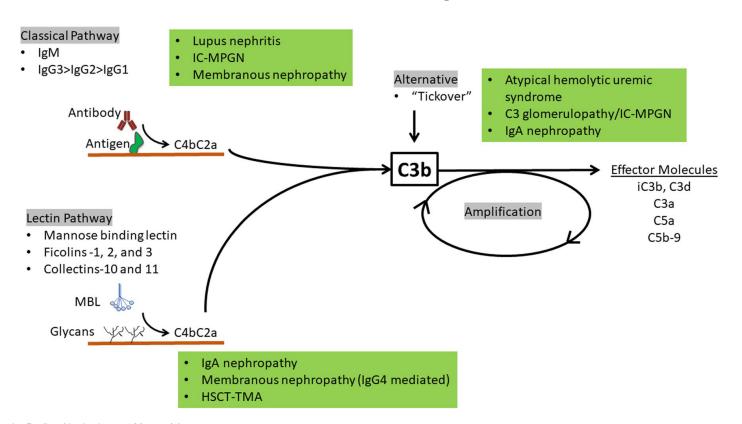
 Deposition of immune complexes in the kidneys

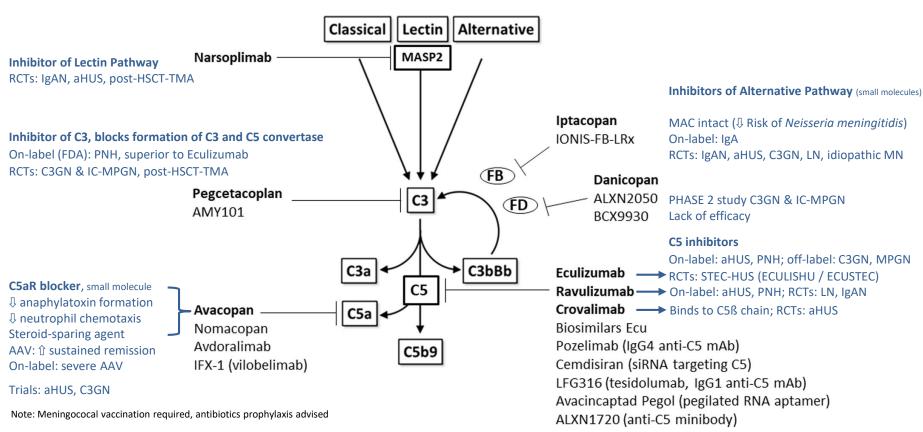

 => multiple therapeutic options


El Karoui K et al. J Am Soc Nephrol. 2024 Jan 1;35(1):103-116. Huang X, et al. Front Pharmacol. 2021 Aug 23;12:715253. Gesualdo L et al. Semin Immunopathol. 2021 Oct;43(5):657-66


Annual eGFR-loss in recent IgAN trials in adults


	Trial	Control Arm	Annual eGFR loss [ml/min]	Reference
	STOP-IgAN (Steroids)	Supportive therapy	-1.5	Rauen, NEJM 2015
	TESTING (Steroids)	Placebo	-5.0	Lv, JAMA 2022
EMA	PROTECT (Sparsentan - ETAR-B + ARB)	Irbesartan 300 mg	-3.8	Rovin, Lancet 2023
EMA	NEFIGARD (Nefecon - Budenosid)	Placebo	-6.0	Lafayette, Lancet 2023
EMA	DAPA-CKD (Dapagliflozin - SGLT2i)	Placebo	-4.7	Wheeler, Kidney Int 2021
FDA EMA	Iptacopan Phase II (complement Factor B inhibitor)	Placebo	-38% Proteinuria at 9 months	Perkovic, NEJM 2024
FDA SLE	Telitacicept Phase II (BAFF + APRIL inhibitor)	Placebo	-10.0 (extrapolated from -5 at 6 Mo)	Lv, Kidney Int Rep 2023
	MMF	Losartan	-3.8	Hou, JAMA Netw Open 2023


New approaches for IgAN- 4-Hit Model

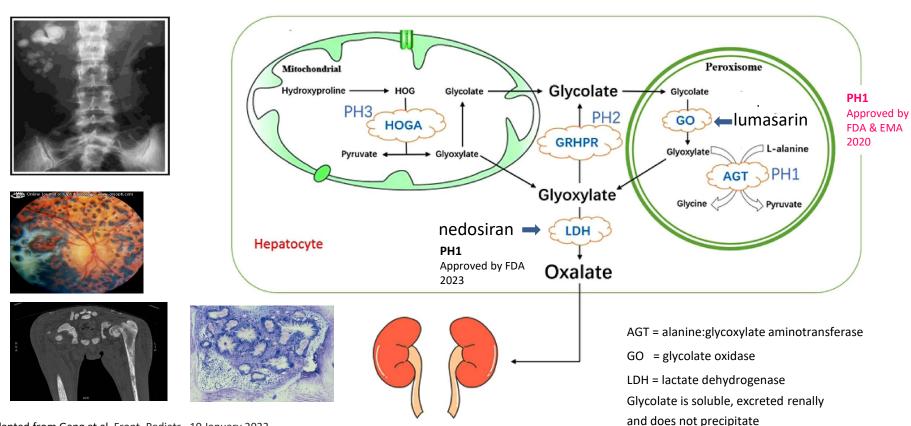


The complement pathway and different inhibitors at different points in the cascade

Antonucci et al., Pediatr Nephrol. 2024 May;39(5):1387-1404

Drug	Target	Mechanism	Clinical trial number		
Atypical hemolytic uremic syndrome					
Iptacopan oral	Factor B	Prevents formation of C3 and C5 convertases NCT04889430 Phase III, adults			
Pegcetacoplan (s.c.)	С3	Prevents formation of C3 and C5 convertases NCT05148299 Phase II postBMT-TMA			
Crovalimab (i.v. then monthly s.c.)	C5	Prevents formation of C5 convertase NCT04858265 NCT04861259			
Avacopan oral	C5aR1	Blocks anaphylatoxin formation (C3a, C4a and/or C5a)	NCT02464891 Phase II, pts on dialysis		
Narsoplimab (i.v. then daily s.c.)	MASP2	Blocks initiation of lectin pathway	NCT03205995		
C3 glomerulopathy and I	mmune-com	olex glomerulonephritis			
Danicopan oral	Factor D	Prevents formation of C3 and C5 convertases	NCT03124368 NCT03369236 Phase II NCT03459443		
Iptacopan oral	Prevents formation of C3 and C5 onvertases NCT03832114, NCT03955445 NCT04817618 C3G Phase III adults Ex NCT05755386 IC-MPGN Phase III		NCT04817618 C3G Phase III adults Ext 12-18 years		
Pegcetacoplan (s.c.)	C3	Prevents formation of C3 and C5 CONVERTAGES NCT03453619 Basket Phase II NCT04572854 C3G – IC-MPGN Phase II NCT05067127 C3G – IC-MPGN Phase III			
Avacopan oral	C5aR1	Blocks anaphylatoxin formation (C3a, C4a and/or C5a)	NCT03301467 (completed)		
BCX9930 oral	Factor D	Prevents formation of C3 and C5 convertases	NCT05162066 Phase II adults, IgAN, MN, C3G, 14 each, terminated/discontinued for BCX10013 once daily		
Narsoplimab (i.v. then daily s.c.)	MASP2	Blocks initiation of lectin pathway	NCT02682407 basket Phase II study, 54 adults with IgAN, LN, C3G and MN		
IgA nephropathy					
Iptacopan oral	Factor B	Prevents formation of C3 and C5 convertases	NCT03373461 NCT04557462 NCT04578834 Phase III		
IONIS-FB-LRx	Factor B	Prevents formation of C3 and C5 convertases	NCT04014335 Phase II		
ALXN2050 oral	Factor D	Prevents formation of C3 and C5 convertases	NCT05097989 Phase II, 126 adults, IgAN or LN, recruiting		
BCX9930 oral	Factor D	Prevents formation of C3 and C5 convertases	NCT05162066 Phase II adults, IgAN, MN, C3G, 14 each, terminated/discontinued for BCX10013 once daily		
Avacopan oral	C5aR1	Blocks anaphylatoxin formation (C3a, C4a and/or C5a)	NCT02384317 Phase II, 5 pts, completed: Bruchfeld et al Clin Kidney Journal 2022		
Ravulizumab i.v.	C5	Prevents formation of C5 convertase NCT04564339 Phase III, 120 adults, IgAN and LN			
Narsoplimab (i.v. then daily s.c.)	MASP2	Blocks initiation of lectin pathway	NCT02682407 basket Phase II study, 54 adults with IgAN, LN, C3G and MN NCT03608033 ARTEMIS Phase III, 450 adults RCT vs placebo		

Clinical trials on complement inhibitors in kidney diseases


(50% include children)

Idiopathic membranous	nephropathy			
Iptacopan	Factor B	Prevents formation of C3 and C5 convertases	NCT04154787 Phase II, adults vs RTX	
Pegcetacoplan s.c.	С3	Prevents formation of C3 and C5 convertases	NCT03453619 basket Phase II	
BCX9930 oral	Factor D	Prevents formation of C3 and C5 NCT05162066 Phase II adults, IgAN, MN, C3G, 14 each, Nt convertases recruiting/discontinued for BCX10013 once daily		
Narsoplimab (i.v. then daily s.c.)	MASP2	Blocks initiation of lectin pathway	NCT02682407 basket Phase II study, 54 adults with IgAN, LN, C3 and MN	
Lupus nephritis				
Iptacopan	Factor B	Prevents formation of C3 and C5 convertases	C5 NCT05268289 Phase II	
Ravulizumab i.v.	C5	Prevents formation of C5 convertase	NCT04564339 Phase III, 120 adults, IgAN and LN	
Narsoplimab (i.v. then daily s.c.)	MASP2	Blocks initiation of lectin pathway	NCT02682407 basket Phase II study, 54 adults with IgAN, LN, C3G and MN	
ALXN2050	Factor D	Prevents formation of C3 and C5 convertases	C5 NCT05097989 Phase II, 126 adults, IgAN or LN, recruiting	
ANCA-associated vasculi	tis with renal	involvement		
Avacopan	C5aR1	Blocks anaphylatoxin formation (C3a, C4a and/or C5a)	NCT02222155 Phase II NCT01363388 Phase II NCT02994927 (completed) Jayne DRW et al NEJM 2021	
IFX-1 (vilobelimab) i.v.	C5a	Blocks anaphilatoxin formation	NCT03895801 Phase II, 57 adults with GPA or MPA NCT03712345 Phase II, 20 adults, terminated	
Post-BMT thrombotic mi	croangiopath	у		
Pegcetacoplan s.c.	СЗ	Prevents formation of C3 and C5 convertases	NCT05148299 Phase II	
Ravulizumab i.v.	C5	Prevents formation of C5 convertase	NCT04543591 (12 years-adults) NCT04557735 (28 days — 17 years)	
Narsoplimab i.v.	MASP2	Blocks initiation of lectin pathway	NCT04247906 (expanded access, all ages)	

Antonucci et al., Pediatr Nephrol. 2024 May;39(5):1387-1404

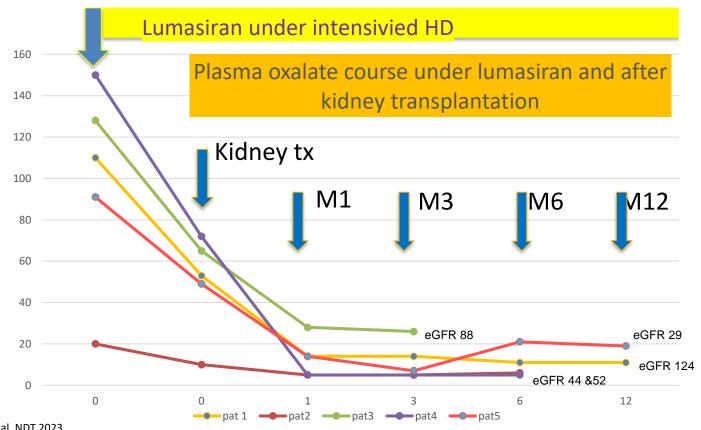
Primary hyperoxaluria type 1

Pathogenesis and mechanisms of siRNA therapy: lumasiran, nedosiran

Adapted from Gang et al. Front. Pediatr., 10 January 2023

Multicenter Long-term Real World Data on Treatment with Lumasiran in Patients With Primary Hyperoxaluria Type 1

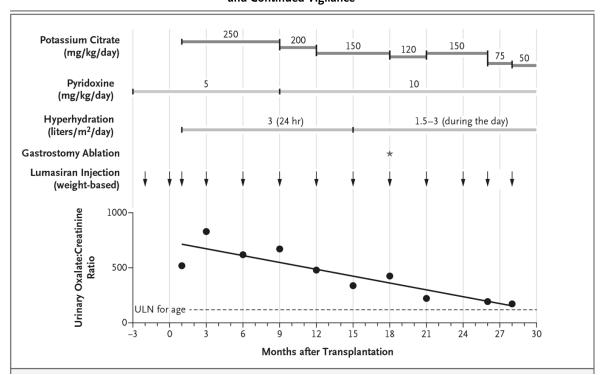
Methods and cohort	Findings Pa		Patier	ents with preserved kidney function			
Multicenter	Results are	e expressed as Mean (SD)	At baseline	At 3 months	At 12 months	At 18 months	1
	□ M (n	Mean urine oxalate nmol/1.73m²/d)	1.88 (0.8)	0.73 (0.26)**	0.72 (0.3)**	0.65 (0.2)**	
33 genetically proven PH1, 13 on dialysis	□ M (n	Mean urine glycolate nmol/1.73m²/d)	2.13 (2.3)	3.54 (1.3)**	5.09 (2.6)**	5.88 (5.7)**	
14 adults, 14 females	∏ • M (n	flean plasma oxalate nmol/1.73m²/d)	10.65 (4.0)	6.96 (4.1)	9.31 (3.6)	9.9 (3.6)	
Age at starting	∏ . M	flean plasma glycolate nmol/1.73m²/d)	67.21 (88.2)	85.43 (46.8)	315.8 (302.8)**	240.9 (174)**	
treatment: 2day-59yrs	Mean eGFR		70.6 (25.5)	Vitamin B6		74.1 (27.7)	
Lumasiran treatment	(m	/ml/min/1.73m²)	71.3 (18.8)	Non V	itamin B6	86.4 (25.4)	
6-27m (med 18)*	** means significantly different as compared to baseline		Dialysis patients				
* Lumasiran dosing: 1) <10Kg= Loading: 6mg/kg monthly for 3 doses; Then 3mg/kg once monthly (Begin after 1m of loading) 210.3mg-Loading: Staffor mosthly for 3 descent		Mean plasma oxalate mmol/1.73m²/d)	78.0 (40.2)	37.2 (16.9)**	43.1 (16.3)	59.3 (23.8)	
 10-20Kg= Loading: 6mg/Kg monthly for 3 doses; Then 6mg/Kg quarterly (Begin after 1m of loading) >20Kg= Loading: 3mg/Kg monthly for 3 doses; 		Mean plasma glycolate	197.2 (220)	337.4 (294)**	443.3 (638)	259.5 (271)	


Then 3mg/Kg quarterly (Begin after 1m of loading)

(mmol/1.73m²/d)

Visual abstract by: Abdul Qader, MD X @md_abdulqader83

Martin-Higueras C et al. 2023 Conclusion Lumasiran treatment is safe and efficient. Not all patients with preserved kidney function experienced satisfactory reduction of urinary oxalate excretion in guarterly dosing. On whether or not a dosage (interval) adjustment is advisable needs clarification. In dialysis, lack of plasma oxalate reduction may relate to dissolving systemic oxalate deposits.


Isolated kidney transplantation under lumasiran therapy in primary hyperoxaluria type 1: a report of five cases

CORRESPONDENCE

Lumasiran, Isolated Kidney Transplantation, and Continued Vigilance

Nedosiran Safety and Efficacy in PH1: Interim Analysis of PHYOX3 30 months

Methods and cohort

Multicenter openlabel extension phase III study

PH1 patients on monthly Nedosiran

No Transplant, dialysis or systemic oxalosis

N=13 Female 53.8%

23 years (median)

Results

Stable range of GFR over time

62-84.2

mL/min/1.73m²

Mean 24-h urine oxalate excretion decreased by

at least 60%

PH1: Primary Hyperoxaluria Type 1 SAE: serious adverse events

in urine

Normal/ near-normal 24-h urine oxalate excretion

76.9% (10/13)

Eligible for ↓ hyperhydration/ stopping co-meds

84.6% (N=11)

↓ annualized stone events compared to baseline

0.37 vs 1.28

from month 2

onwards

100% Mild to moderate, mostly at the

injection site

SAEs

N=3 (23%)

Not treatment related No deaths

Groothoff J et al. 2024

months

30

Follow up:

Visual Abstract by:

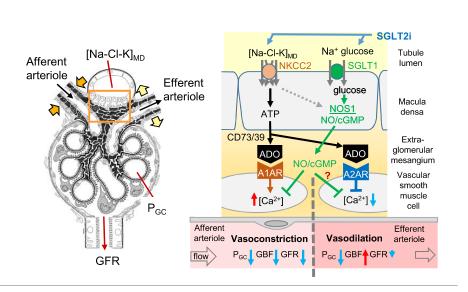
S. Sudha Mannemuddhu, MD, FAAP X @drM_Sudha

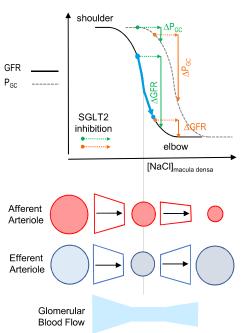
Conclusion: Nedosiran was well tolerated in patients with PH 1, and treatment resulted in a sustained, substantial reduction in urine oxalate excretion for at least 30 months in this long-term study. No safety signals were identified to date. The PHYOX3 study is ongoing.

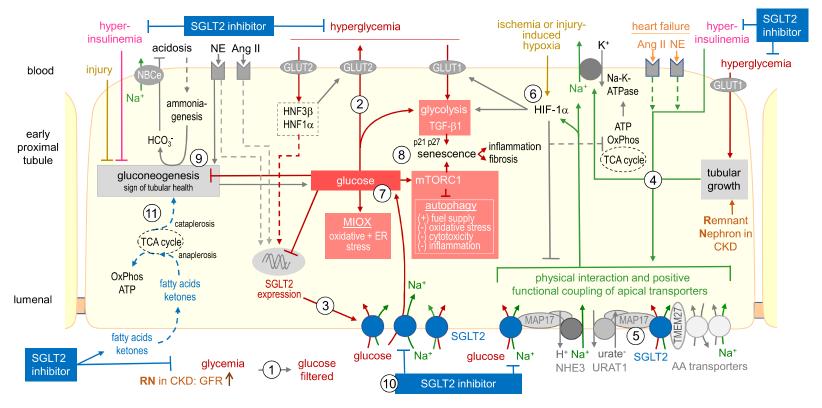
Table 2 | Recommended management and monitoring of patients with PH1 on RNAi therapy

Group ^a	Start	Cessation criteria after 6 months of therapy	Six-monthly analyses for 5 years and cessation criteria
Group A (VB6⁻, eGFR >30)	We recommend starting therapy	Uox >1.5 UL or less than a 30% reduction in Uox ^b or a deterioration of the clinical condition or evidence of a SAE°	SAE or deterioration in clinical condition related to RNAi therapy ^c
Group B (VB6⁺, eGFR >30)	We suggest starting therapy, based on patient characteristics (not fully VB6 responsive, severe disease)	Uox >1.5 UL or <30% reduction Uox ^b ; or deterioration of clinical condition or evidence of a SAE ^c	SAE or deterioration in clinical condition related to RNAi therapy ^c
Group C (VB6 ⁻ , eGFR <30)	We recommend starting therapy	Decrease in Pox <20% from baseline or deterioration of clinical condition or evidence of a SAE°	Stop if decrease in Pox is <20% ^{d,e} from baseline: discuss options if the decrease in Pox is <30% from baseline ^{d,e} . Also stop treatment if there is evidence of an SAE OR deterioration in clinical condition related to RNAi therapy ^c
Group D (VB6 ⁺ , eGFR <30)	We suggest starting therapy based on patient characteristics (not fully VB6 sensitive, rapidly deteriorating kidney function in case of eGFR 20–30)	Decrease in Pox <20% from baseline ^{d,f} or deterioration of clinical condition as assessed by a committee; or evidence of a SAE ^c	Stop therapy if the decrease in Pox is <20% ^{2,4} ; discuss options if the decrease in Pox is <30% ^{d,f} . Also stop treatment if there is evidence of a SAE or deterioration in clinical condition related to RNAi therapy ^c
Group E (no genetic diagnosis, eGFR <30)	We recommend starting therapy with monthly monitoring of Pox levels	Decrease Pox <20% of baseline or deterioration of clinical condition as assessed by a committee; or evidence of a SAE°. Also stop therapy if the suspected PH diagnosis is not confirmed genetically	Not applicable
Group F (no ongoing clinical disease)	We suggest starting therapy in adults and recommend starting therapy in children	Uox >1.5 UL or <30% reduction Uox of baseline; or deterioration of clinical condition as assessed by a committee; or evidence of a SAE°	SAE or deterioration in clinical condition related to RNAi therapy°
Group G (full VB6 ⁺)	We do not recommend starting therapy	Not applicable	Not applicable

Thank you for your attention!




SGLT2 Inhibitors


- ✓ SGLT2i inhibit Na-Glucose reabsorption in proximal tubules.
- ✓ Overwhelming evidence for broad nephroprotective efficacy in adults with CKD
- ✓ Activate tubulo-glomerular feedback (TGF) and reduce hyperfiltration-mediated kidney injury

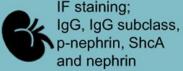
SGLT2i induced TGF via NaCl sensing at macula desna (MD)

GFR and pressure in glomerular capillaries as a function of NaCl_{MD} ± SGLT2i

- ✓ Induce a fasting-like metabolic response => optimize kidney's energy substrate utilization
- ✓ Regulate autophagy and maintenance of cellular homeostasis
- ✓ Attenuate sympathetic hyperactivity
- ✓ Improve vascular health and microvascular function

A multi-institutional study found a possible role of antinephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence.

Kidney transplant recipients with FSGS from 1986 to 2022: **109 patients**


Stocked plasma/serum samples and graft biopsies

14 presumed primary FSGS;

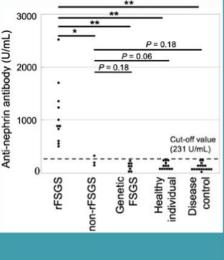
11 recurrent FSGS and 3 non-recurrent FSGS 8 genetic FSGS

Methods

1 hour biopsy, Graft biopsy

SIM observation

Plasma or Serum


ELISA anti-nephrin antibodies

Outcomes 1 h During recurrence Pre-perfusion During recurrence Pre-perfusion During recurrence

Results of IF rFSGS: recurrent FSGS

1,000,100				
	rFSGS n=11	non-rFSGS n=3	Genetic FSGS n=8	
lgG co-localized with nephrin	11 (100%)	0 (0%)	0 (0%)	
p-nephrin↑	11 (100%)	0 (0%)	0 (0%)	
ShcA ↑	11 (100%)	0 (0%)	0 (0%)	

positive anti-nephrin Ab; 11/11 (100 %) patients with recurrent FSGS

Shirai, 2023

CONCLUSION Circulating anti-nephrin antibodies are a possible candidate for circulating factors involved in the pathogenesis of post-transplant recurrent FSGS, and this may be mediated by nephrin phosphorylation.

- In this study, circulating antinephrin autoantibodies were common in patients with MCD or idiopathic nephrotic syndrome and appeared to be markers of disease activity.
- Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance.