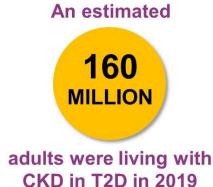


New insights new targets

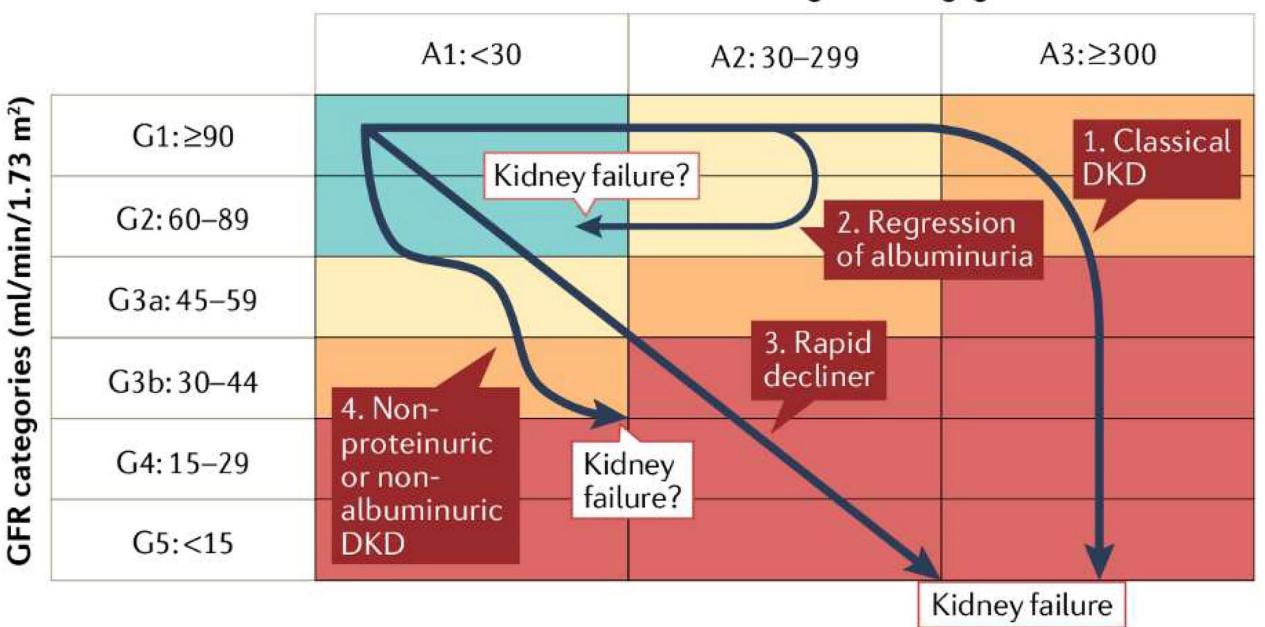

Magdy ElSharkawy

Prof. Of Nephrology
Head of Nephrology Department
Ain-Shams University
Vise president of ESNT
ISHD board member

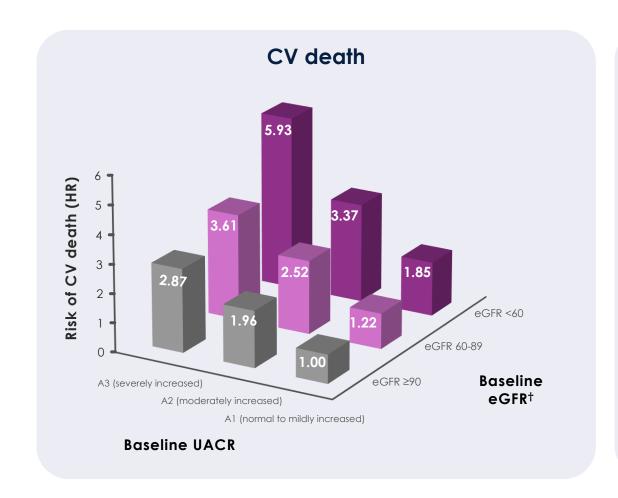
Incidence of CKD per 100 person-years

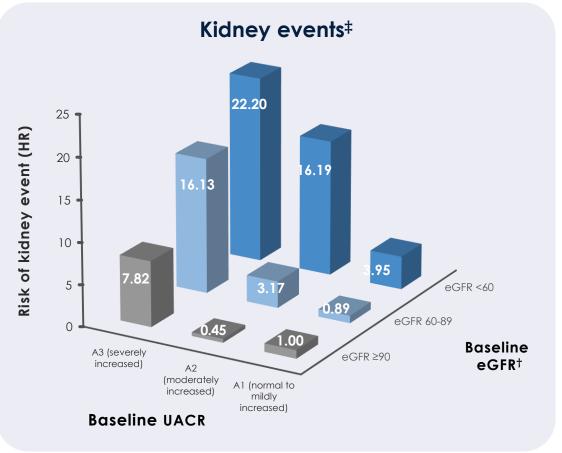

Compared with healthy individuals, having CKD and diabetes can shorten life expectancy by 16 years*

*At age 30 compared to patients without diabetes or CKD. Study population consisted of 543,412 adults who participated in a self-paying comprehensive health surveillance programme between 1994 and 2008. CKD, chronic kidney disease; Early CKD, CKD stages 1–3; T2D, type 2 diabetes


416.7
MILLION
adults with T2D

Wen CP et al. Kidney Int 2017; 92:388–396



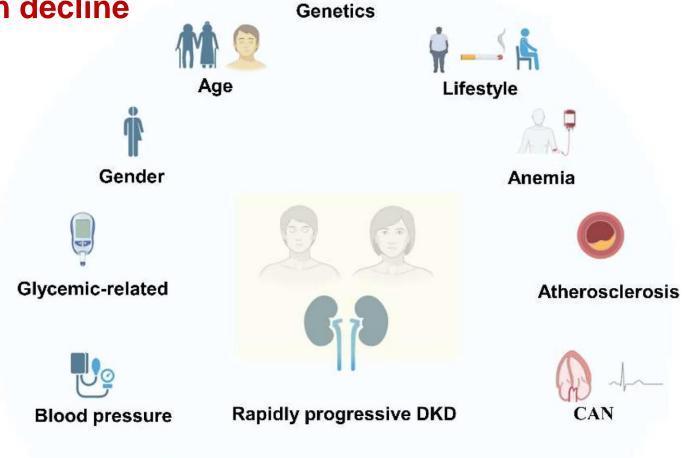

1. International Diabetes Federation 2019.

Albuminuria categories (mg/g)

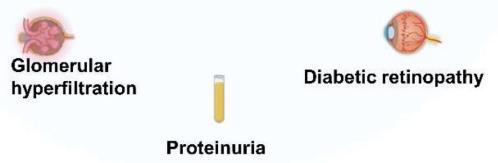
increased risk of CV death and kidney events*

^{*}Average time to follow-up for risk assessment was 4.3 years; †eGFR in mL/min/1.73 m²; ‡A kidney event was defined as death as a result of kidney disease, requirement for dialysis or transplantation, or doubling of serum creatinine to >2.26 mg/dL. HR, hazard ratio. Figure used with permission of The American Society of Nephrology, from "Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes", Ninomiya T, et al, on behalf of the ADVANCE Collaborative Group, Journal of the American Society of Nephrology, vol 20, pages 1813-1821, copyright 2009; permission conveyed through Copyright Clearance Center, Inc.

Ninomiya T et al. J Am Soc Nephrol 2009;20:1813


Hard renal outcome endpoints Definition of MARE. Incident kidney disease is defined as new onset of kidney.

Hard renal outcome endpoints MARE MARE MARE Major adverse Major adverse Major adverse renal events renal events renal events 5-point MARE 3-point MARE 4-point MARE -Incident kidney disease Incident kidney disease Incident kidney disease -ESKD (Initiation of KRT) -Worsening of kidney - Worsening of kidney disease disease Death of renal cause -ESKD (Initiation of KRT) -ESKD (Initiation of KRT) Death of renal cause Death of renal cause Death of non-renal cause



Chronic Kidney Disease and Progression Risk factors for rapid kidney function decline in diabetes patients

The strength of association	Risk factors
Very likely	Genetics, poor glycemic control, intensive blood pressure control, hypertension, lifestyle
Probable	Older age, rapid glycemic decline, CAN, anemia
Possible	Early-onset type 2 diabetes, atherosclerosis, diabetic retinopathy, proteinuria
Controversial	Gender

MODO

KDIGO DKD update 2022 Blood pressure control Goal-directed Glycemic Lipid therapy control management GLP-1 RA ns-MRA Antiplatelet First-line (T2D, (T2D, residual therapies drug therapy glycemia) albuminuria) Lifestyle RAS blockade Metformin SGLT2 inhibitors Statin (T2D) (T2D) (HTN) Smoking Exercise Weight cessation

Diabetes with CKD

Glycemic control is based on insulin for type 1 diabetes and a combination of metformin and SGLT2 inhibitors (SGLT2i) for type 2 diabetes. Metformin may be given when eGFR ≥30 ml/min per 1.73 m² and SGLT2i should be used when eGFR is ≥20 ml/min per 1.73 m². SGLT2i are recommended for patients with type 2 diabetes and chronic kidney disease (CKD). Renin—angiotensin system (RAS) inhibition is recommended for patients with albuminuria and hypertension. Aspirin generally should be used lifelong for secondary prevention among those with established cardiovascular disease and may be considered for

Chapter 1: Comprehensive care in patients with diabetes and CKD

1.1 Comprehensive diabetes and CKD management

Practice Point 1.1.1: Patients with diabetes and chronic kidney disease (CKD) should be treated with a comprehensive strategy to reduce risks of kidney disease progression and cardiovascular disease (Figures 1 and 2).

Figure 1. Kidney-heart risk factor management

Glycemic control
Blood pressure
Lifestyle modification
Other

JOURNAL ARTICLE

Volume 109, Issue 8 August 2024

< Previous Next >

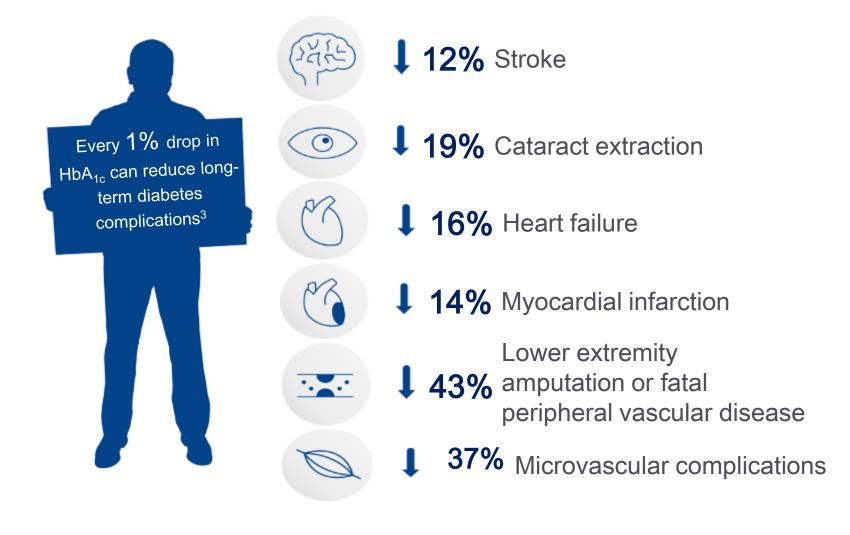
Poor Glycemic Control Is Associated With More Rapid Kidney Function Decline

After the Opent of Dichetic Vidney Dices

Conclusion

In both type 1 and type 2 diabetes, poor glycemic control is associated with a more rapid rate of glomerular filtration rate decline after DKD onset, especially in persons with severe albuminuria.

8, August 2024, Pages 2124-2135,


https://doi.org/10.1210/clinem/dgae044

Published: 23 January 2024 Article history ▼

UKPDS 1977-1997 The importance of glycaemic control

Optimal glycaemic control
early in the course of diabetes
may protect against, or delay,
long-term complications of
type 2 diabetes (beneficial
legacy effect)^{1,2}

Khunti et al. Diabetes Care. 2013;(36):3411–3417.

^{2.} Holman et al. N Engl J Med. 2008;359(15):1577-1589.

^{3.} Stratton et al., BMJ, 2000;321(7258):405-412.

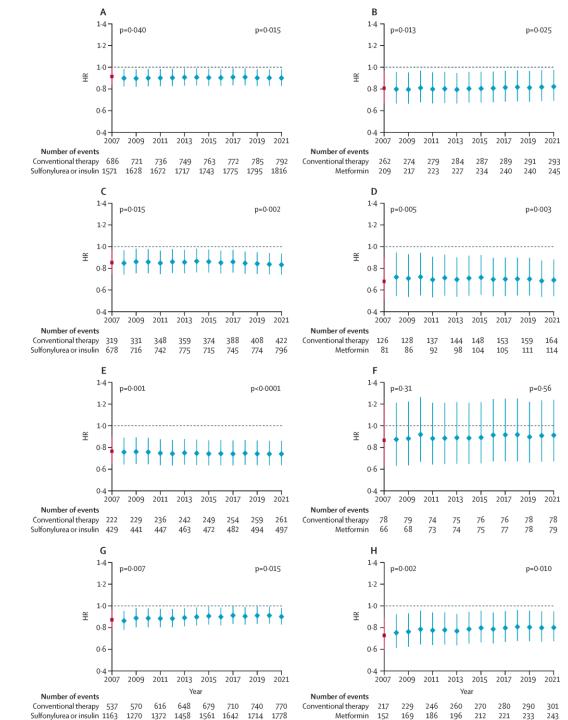
44 years UKPDS follow up EASD 2022

Participant Disposition

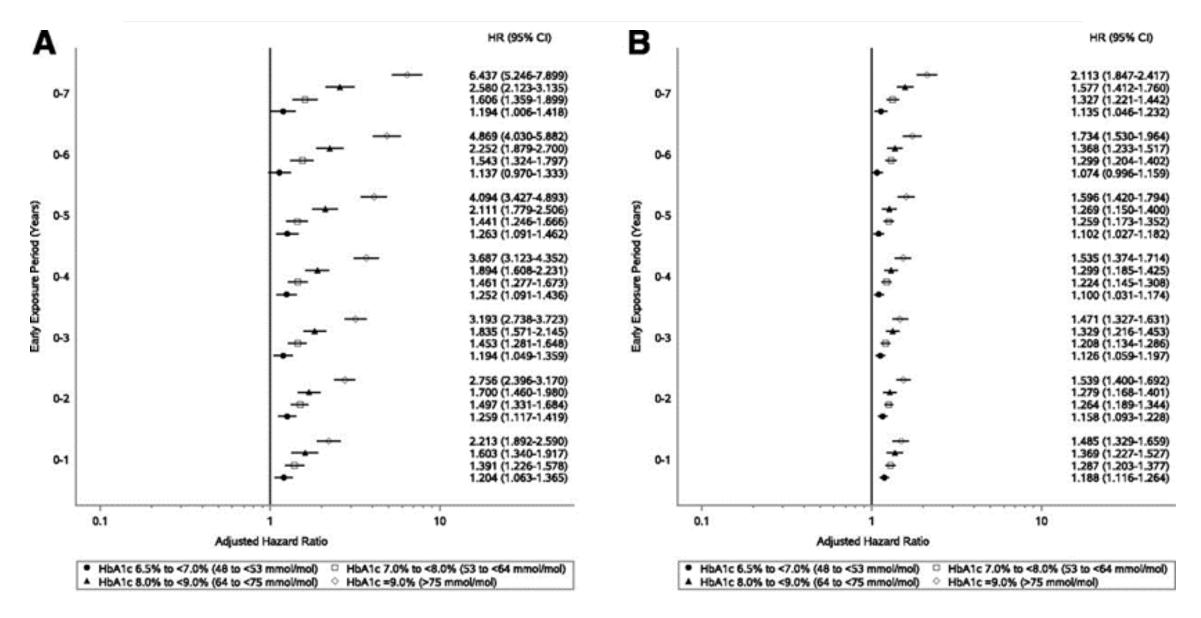
		<u>Medi</u>	an Follo	ow-up
		10.0y	16.9y	17.4y
Aggregate Endpoint		1997	2007	2021
Any diabetes-related endpoint	RRR:	12%	9%	10%
	P:	0.029	0.040	0.016
Myocardial infarction	RRR:	16%	15%	15%
	P:	0.052	0.014	0.0074
Microvascular disease	RRR:	25%	24%	26%
	P:	0.0099	0.001	<0.0001
All-cause mortality	RRR:	6%	13%	11%
	P:	0.44	0.007	0.0093

RRR = Relative Risk Reduction, P = Log Rank

THE LANCET


This journal Journals Publish Clinical Global health Multimedia Events About

ARTICLES · Volume 404, Issue 10448, P145-155, July 13, 2024 · *Open Access*


Post-trial monitoring of a randomised controlled trial of intensive glycaemic control in type 2 diabetes extended from 10 years to 24 years (UKPDS 91)

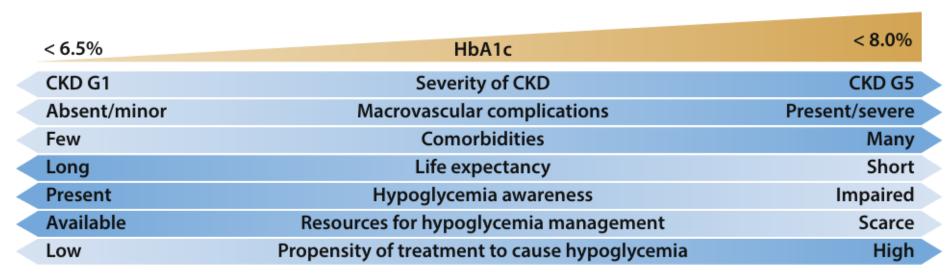
HRs for four prespecified aggregate clinical outcomes HRs for the UK Prospective Diabetes Study participants who had any diabetes-related endpoint (A–B), myocardial infarction (C–D), microvascular disease (E–F), or who died from any cause (G–H)

From: The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study)

Good health and function, low treatment risks and burdens

Most adults

Healthy older adults


Older adults with with complex/ intermediate health

T

Older adults with very complex/ poor health
Any adults with limited life

KDIGO executive conclusions

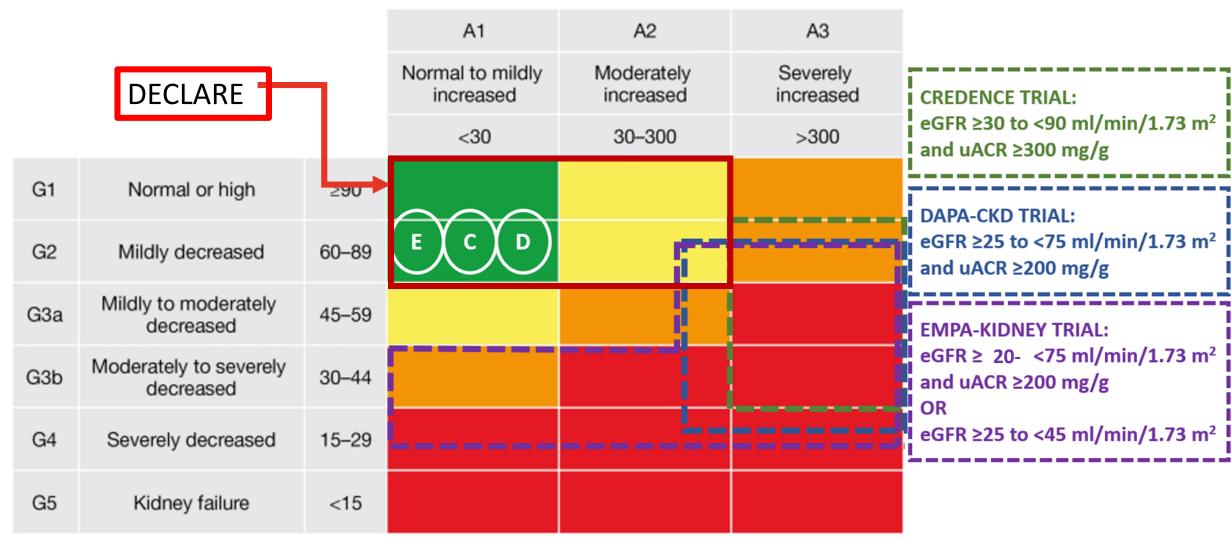
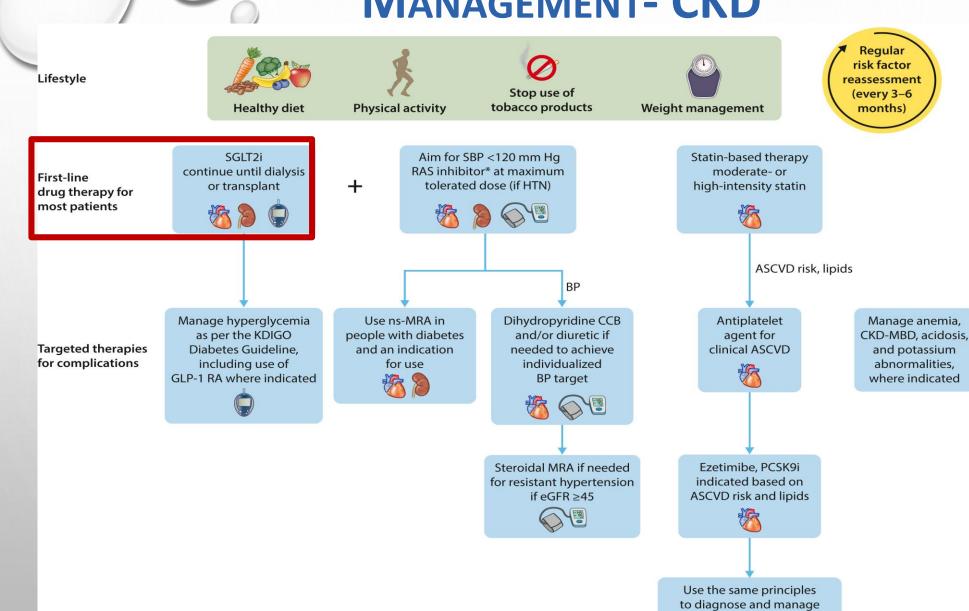

IH de Boer et al.: KDIGO guideline on diabetes in CKD

Figure 3 | Factors guiding decisions on individual glycated hemoglobin (HbA1c) targets. CKD, chronic kidney disease; G1, estimated glomerular filtration rate (eGFR) >90 ml/min per 1.73 m²; G5, eGFR <15 ml/min per 1.73 m².

Pharmacotherapy with cardiovascular, kidney, weight, or other benefits	Pharmacotherapy without nonglycemic benefits
No cardiovascular complications	Established cardiovascular complications
Few or minor comorbidities	Severe, life-limiting comorbidities

Albuminuria (ACR) categories (mg/g)



E = EMPA-REG, C = CANVAS, D = DECLARE TIMI 58

MANAGEMENT- CKD

ASCVD and atrial fibrillation

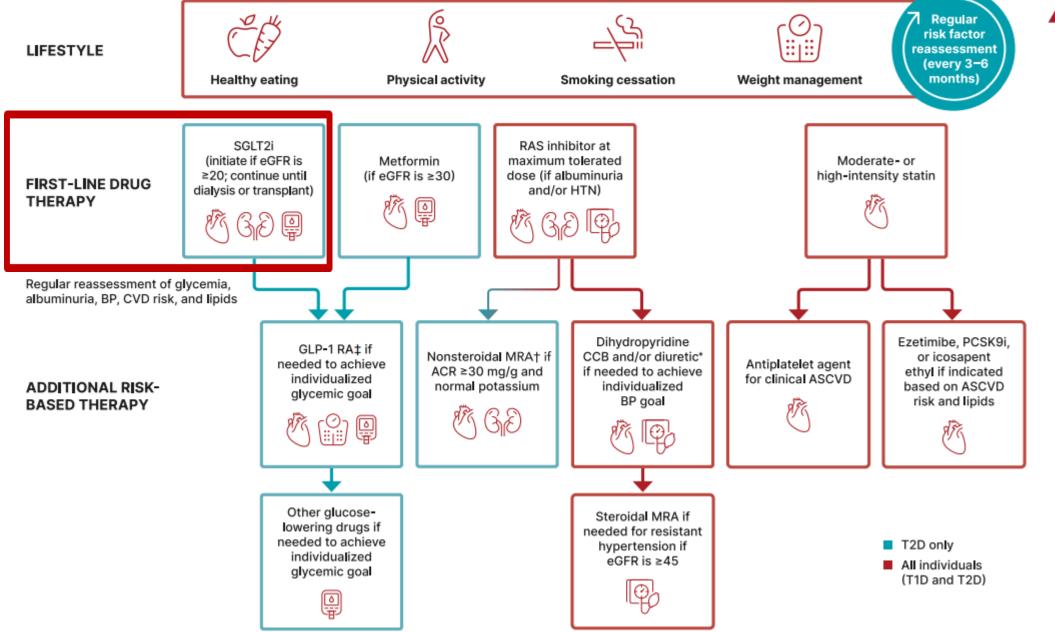
as in people without CKD

2024

ACE, angiotensin-converting enzyme inhibitor;
 ACR, albumin-creatinine ratio; ARB,
 angiotensin II receptor blocker; ASCVD,
 atherosclerotic cardiovascular disease; BP,
 blood pressure; CCB, calcium channel blocker;
 CGM, continuous glucose monitoring; eGFR,
 estimated glomerular filtration rate; GLP-1 RA,
 glucagon-like peptide-1 receptor agonist;
 HbA1c, glycated hemoglobin; HTN,
 hypertension; LDL-C, low-density lipoprotein
 cholesterol; MRA, mineralocorticoid receptor
 antagonist; PCSK9i, proprotein convertase
 subtilisin/kexin type 9 inhibitor; SGLT2,
 sodium-glucose cotransporter-2; T2D, Type 2
 diabetes; TG, triglycerides

Effect of sodium glucose co-transporter-2 inhibition on kidney disease

progression by presumed primary kidney


TH	HE	LAN	ICE	T
				7 57

"Countries and companies continue to make choices that threaten the health and survival of people in every part of the world...At this critical juncture, an immediate, health-centred response can still secure a future in which world populations can not only survive, but thrive."

See Countdown page 1619

Editorial	Articles	Articles	Articles	Countdown
Global heating: an urgent call for action to protect health Serpey 1937	Intensive blood pressure control after endovascular thrombectomy for acute inchaemic stroke (sepay) 1985	Heloobotter pylori eradication for primary prevention of peptic ulcer bleeding Sergion 1557	Development, measurement, and validation of the surgical preparedness index for any 1607	The 2022 report of the Lonce Countdown on health and climate change: health at the mercy of fossilfuel tox pays 1619

	Mean baseline eGFR, mL/min per 1-73m²	Events/parti	nts/participants Event rate per 1000 patient-years			RR (95% CI)	
		SGLT2i	Placebo	SGLT2i	Placebo		
Diabetic kidney disease	e or nephropathy*						
CREDENCE	56	153/2202	230/2199	27	41	_	0.64 (0.52-0.79)
SCORED	44	37/5292	52/5292	5	7		0.71 (0.46-1.08)
DAPA-CKD	43	93/1271	157/1239	36	64		0.55 (0.43-0.71)
EMPA-KIDNEY	36	85/1032	133/1025	42	67	_	0.56 (0.43-0.74)
Subtotal	46	368/9797	572/9755	**			0.60 (0.53-0.69)
Ischaemic and hyperte	nsive kidney disease						
DAPA-CKD	43	18/324	26/363	28	37		0.74 (0.40-1.36)
EMPA-KIDNEY	35	37/706	52/739	27	37		0.69 (0.45-1.05)
Subtotal	38	55/1030	78/1102		122.0		0.70 (0.50-1.00)
Glomerular disease							
DAPA-CKD	43	21/343	46/352	33	70 —		0.43 (0.26-0.72)
EMPA-KIDNEY	42	69/853	95/816	44	64		0.68 (0.50-0.93)
Subtotal	42	90/1196	141/1168	**	**		0.60 (0.46-0.78)
Other kidney disease o	runknown						
DAPA-CKD	43	10/214	14/198	25	37		0.81 (0.35-1.83)
EMPA-KIDNEY	36	36/713	52/725	26	36		0.72 (0.47-1.10)
Subtotal	38	46/927	66/923	W.	344		0.74 (0.51-1.08)
Any diagnosis							
CREDENCE	56	153/2202	230/2199	27	41	-	0.64 (0.52-0.79)
SCORED	44	37/5292	52/5292	5	7		0.71 (0.46-1.08)
DAPA-CKD	43	142/2152	243/2152	33	58	_	0-56 (0-45-0-68)
EMPA-KIDNEY	37	227/3304	332/3305	36	52	-in-	0.64 (0.54-0.76)
Total	44	559/12950	857/12948	**	9 11 ()		0.62 (0.56-0.69)
	oups of primary kidney disease d by eGFR for any diagnosis: p=	e: p=0·67			0.25	0.50 0.75 1.00 1.50 SGLT2i better Placebol	petter

American Diabetes Association

2025

			Primary outcome		Kidney outcomes		
Drug	Trial	Kidney-related eligibility criteria	Primary outcome	Effect on primary outcome	Effect on albuminuria or albuminuria-containing composite outcome	Effect on GFR loss ^a	Adverse effects
SGLT2 inhibitor	s						
Empagliflozin	EMPA-REG OUTCOME	eGFR ≥30 ml/min per 1.73 m²	MACE	1	1 1	11	Genital mycotic infections, DKA
Canagliflozin	CANVAS trials	eGFR ≥30 ml/min per 1.73 m²	MACE	1	↓ ↓	1 1	Genital mycotic infections, DKA,
	CREDENCE	ACR >300 mg/g [30 mg/mmol] and eGFR 30–90 ml/min per 1.73 m ²	Progression of CKD ^b	11	↓ ↓	11	amputation Genital mycotic infections, DKA
Dapagliflozin	DECLARE-TIMI 58	CrCl ≥60 ml/min	Dual primary outcomes: MACE and the composite of hospitalization for heart failure or CV death ^c	↔/↓	1	11	Genital mycotic infections, DKA
GLP-1 receptor	agonists						
Lixisenatide	ELIXA	eGFR ≥30 ml/min per 1.73 m²	MACE	\leftrightarrow	1	\leftrightarrow	None notable
Liraglutide	LEADER	eGFR ≥15 ml/min per 1.73 m²	MACE	1	1	↔	GI
Semaglutide ^d	SUSTAIN-6	Patients treated with dialysis	MACE	Į.	1 1	NA	GI
	PIONEER 6	excluded eGFR ≥30 ml/min per 1.73 m²	MACE	↔	NA	NA	GI
Exenatide	EXSCEL	eGFR ≥30 ml/min per 1.73 m²	MACE	\leftrightarrow	↔	\leftrightarrow	None notable
Albiglutide	HARMONY	eGFR ≥30 ml/min per 1.73 m²	MACE	1	↔	NA	Injection site reactions
Dulaglutide	REWIND	eGFR ≥15 ml/min per 1.73 m²	MACE	1	1	1	GI
DPP-4 inhibitor	s						
Saxagliptin	SAVOR-TIMI 53	eGFR ≥15 ml/min per 1.73 m²	MACE	↔	1	↔	HF; any hypoglycemic event (minor and major) also more common
Alogliptin	EXAMINE	Patients treated with dialysis excluded	MACE	\leftrightarrow	NA	NA	None notable
Sitagliptin	TECOS	eGFR ≥30 ml/min per 1.73 m²	MACE	↔	NA	NA	None notable
Linagliptin	CARMELINA	eGFR ≥15 ml/min per 1.73 m ²	Progression of CKDb	\leftrightarrow	r	↔	None notable

The long-term effects of dapagliflozin in chronic kidney disease: a time-to-event analysis

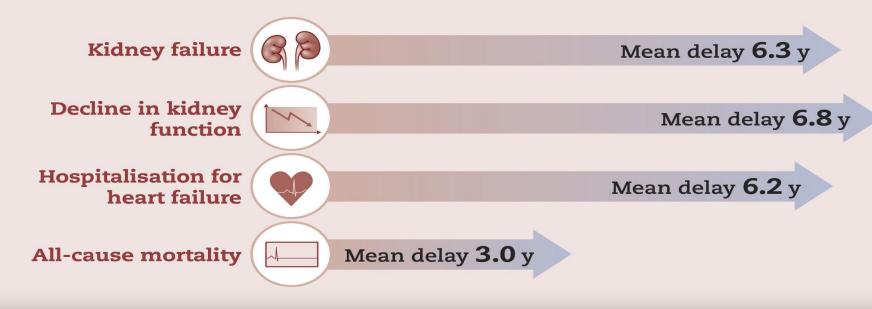
To extrapolate the outcome-based clinical benefits of treatment with dapagliflozin in patients with chronic kidney disease

Methods

Combine patient-level data from clinical trials of dapagliflozin treatment

Higher-risk DAPA-CKD trial Whole trial population CKD 2–4 Elevated albuminuria

Lower-risk DECLARE-TIMI 58 trial CKD subpopulation Early CKD Low albuminuria

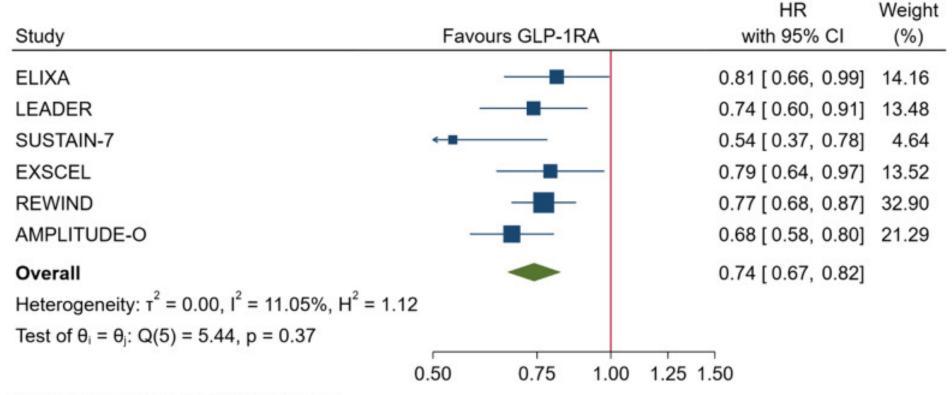


Calculate was the state of the

Calculate mean time to event for clinical endpoints extrapolated across patient lifetime

Results

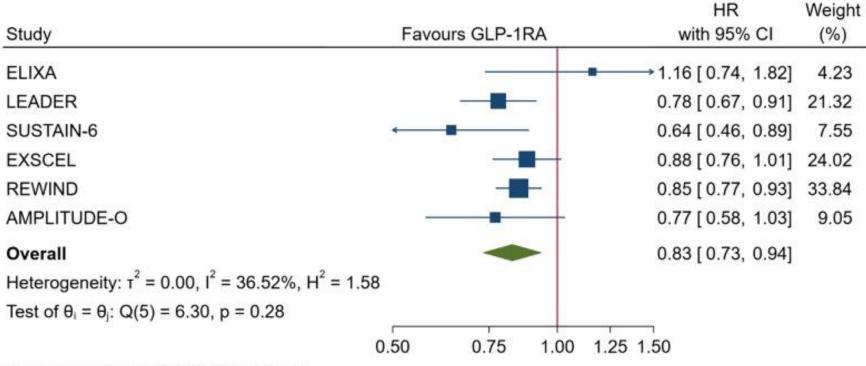
Treatment of a pooled (mixed higher and lower CKD risk) population with dapagliflozin over a lifetime time horizon was estimated to delay the onset of adverse clinical events



McEwan, P. et al. NDT (2024) @NDTSocial Treatment with dapagliflozin over a lifetime time horizon may considerably delay the time to major adverse cardio-renal outcomes and improve life expectancy

GLP1 Macroalbuminuria

Macroalbuminuria



Random-effects empirical Bayes model Knapp-Hartung standard errors

Daira et al., Cardiovasc Diabetol. 2021

GLP1 Renal Endpoints

Renal endpoints

Random-effects empirical Bayes model Knapp-Hartung standard errors

Daira et al., Cardiovasc Diabetol. 2021

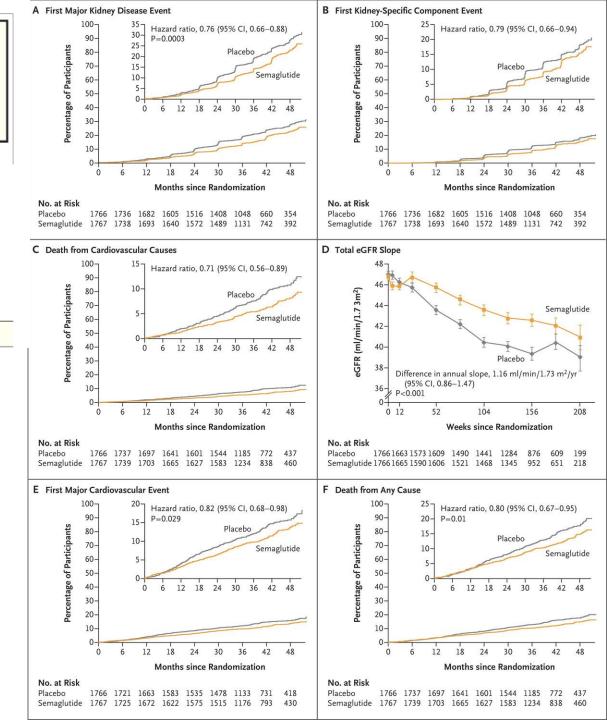
			Primary outcome		Kidney outcomes		
Drug	Trial	Kidney-related eligibility criteria	Primary outcome	Effect on primary outcome	Effect on albuminuria or albuminuria-containing composite outcome	Effect on GFR loss ^a	Adverse effects
SGLT2 inhibitor	rs						
Empagliflozin	EMPA-REG OUTCOME	eGFR ≥30 ml/min per 1.73 m²	MACE	Ţ	‡ ‡	11	Genital mycotic infections, DK
Canagliflozin	CANVAS trials	eGFR ≥30 ml/min per 1.73 m²	MACE	Ţ	↓ ↓	1 1	Genital mycotic infections, DK
	CREDENCE	ACR >300 mg/g [30 mg/mmol] and eGFR 30–90 ml/min per 1.73 m ²	Progression of CKD ^b	† ‡	††	11	amputation Genital mycotic infections, DK
Dapagliflozin	DECLARE-TIMI 58	CrCl ≥60 ml/min	Dual primary outcomes: MACE and the composite of hospitalization for heart failure or CV death ^c	↔/↓	1	11	Genital mycotic infections, DK
GLP-1 receptor	agonists						
Lixisenatide	ELIXA	eGFR ≥30 ml/min per 1.73 m²	MACE	↔	1	\leftrightarrow	None notable
Liraglutide	LEADER	eGFR ≥15 ml/min per 1.73 m²	MACE	1	1	↔	GI
Semaglutide ^d	SUSTAIN-6	Patients treated with dialysis	MACE	↓ ·	1 1	NA	GI
	PIONEER 6	excluded eGFR ≥30 ml/min per 1.73 m²	MACE	\leftrightarrow	NA	NA	GI
Exenatide	EXSCEL	eGFR ≥30 ml/min per 1.73 m²	MACE	↔	↔	\leftrightarrow	None notable
Albiglutide	HARMONY	eGFR ≥30 ml/min per 1.73 m²	MACE	1	↔	NA	Injection site reactions
Dulaglutide	REWIND	eGFR ≥15 ml/min per 1.73 m²	MACE	1	1	1	GI
DPP-4 inhibitor	rs						
Saxagliptin	SAVOR-TIMI 53	eGFR ≥15 ml/min per 1.73 m ²	MACE	↔	1	↔	HF; any hypoglycemic event (minor and major) also more common
Alogliptin	EXAMINE	Patients treated with dialysis excluded	MACE	↔	NA	NA	None notable
Sitagliptin	TECOS	eGFR ≥30 ml/min per 1.73 m²	MACE	\leftrightarrow	NA	NA	None notable
Linagliptin	CARMELINA	eGFR ≥15 ml/min per 1.73 m ²	Progression of CKDb	\leftrightarrow	1	\leftrightarrow	None notable

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 11, 2024

VOL. 391 NO. 2

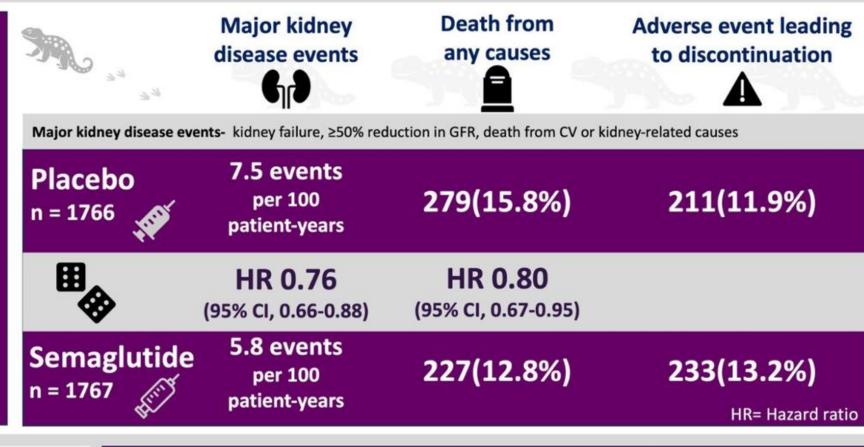

Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes

Vlado Perkovic, M.B., B.S., Ph.D., Katherine R. Tuttle, M.D., Peter Rossing, M.D., D.M.Sc., Kenneth W. Mahaffey, M.D., Johannes F.E. Mann, M.D., George Bakris, M.D., Florian M.M. Baeres, M.D., Thomas Idorn, M.D., Ph.D., Heidrun Bosch-Traberg, M.D., Nanna Leonora Lausvig, M.Sc., and Richard Pratley, M.D., for the FLOW Trial Committees and Investigators*

ABSTRACT

CONCLUSIONS

• Semaglutide reduced the risk of clinically important kidney outcomes and death from cardiovascular causes in patients with type 2 diabetes and chronic kidney disease. (Funded by Novo Nordisk; FLOW ClinicalTrials.gov number, NCT03819153.)



Semaglutide for CKD in Patients with Type 2 Diabetes: "FLOW"ing with the Semaglu"TIDE"

METHODS International, doubleblind, placebo-controlled 28 countries Type 2 DM and CKD: GFR 50-75 ml/min + ACR 300-5000 mg/g GFR 25-<50 ml/min + ACR 100-5000 mg/g Median follow-up, 3.4 years

Reference: Perkovic,V et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. NEJM, May 2024.

Conclusion: Semaglutide reduced the risk of clinically important kidney outcomes and death from cardiovascular causes in patients with type 2 diabetes and chronic kidney disease.

Referenc

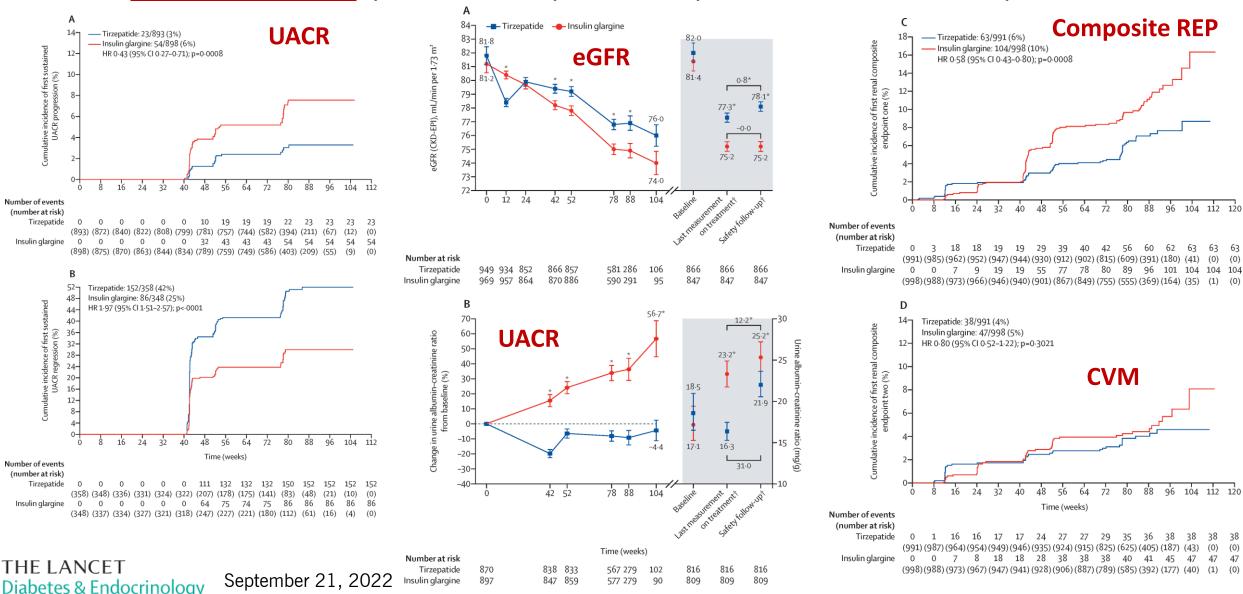
Article In


Linked A

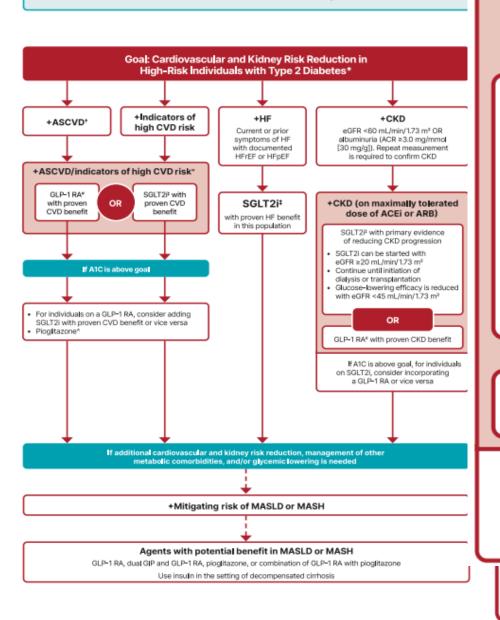
Press release

Tirzepatide Slowed Progression of Chronic Kidney Disease in Patients with Type 2 Diabetes with **Increased Cardiovascular Risk**

June 03, 2022 | New Orleans, Louisiana



Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the **SURPASS-4 trial**: post-hoc analysis of an open-label, randomised, phase 3 trial



Use of Glucose-Lowering Medications in the Manage

HEALTHY LIFESTYLE BEHAVIORS; DIABETES SELF-M EDUCATION AND SUPPORT; SOCIAL DETERMINANT:

2025

+CKD

eGFR <60 mL/min/1.73 m² OR

+CKD (on maximally tolerated dose of ACEi or ARB)

SGLT2i[‡] with primary evidence of reducing CKD progression

- SGLT2i can be started with eGFR ≥20 mL/min/1.73 m²
- Continue until initiation of dialysis or transplantation
- Glucose-lowering efficacy is reduced with eGFR <45 mL/min/1.73 m²

OR

GLP-1 RA# with proven CKD benefit

If A1C is above goal, for individuals on SGLT2i, consider incorporating a GLP-1 RA or vice versa

on SGLT2i, consider incorporating a GLP-1 RA or vice versa

2025

Efficacy for weight loss

Very high: Semaglutide, tirzepatide

High:

Dulaglutide, liraglutide

Intermediate:

GLP-1 RA (not listed above), SGLT2i

Neutral:

Metformin, DPP-4i Metformin or other agent (including combination therapy) that provides adequate EFFICACY to achieve and maintain glycemic treatment goals

Prioritize avoidance of hypoglycemia in high-risk individuals

Efficacy for glucose lowering

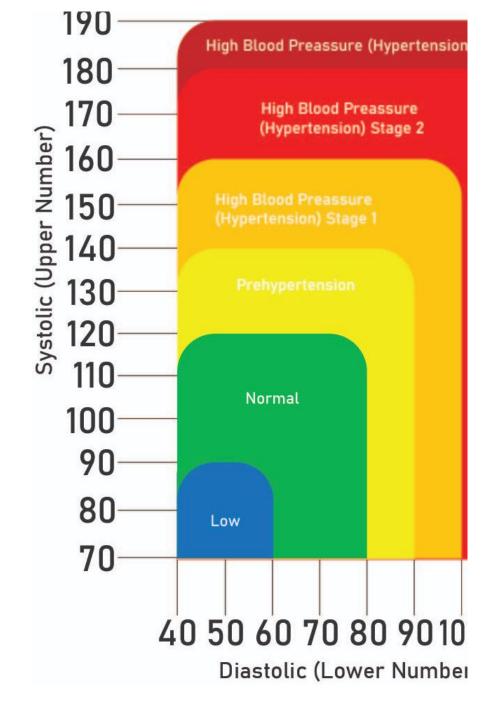
Very high:

Dulaglutide (high dose), semaglutide, tirzepatide, insulin


Combination oral, combination injectable (GLP-1 RA and insulin)

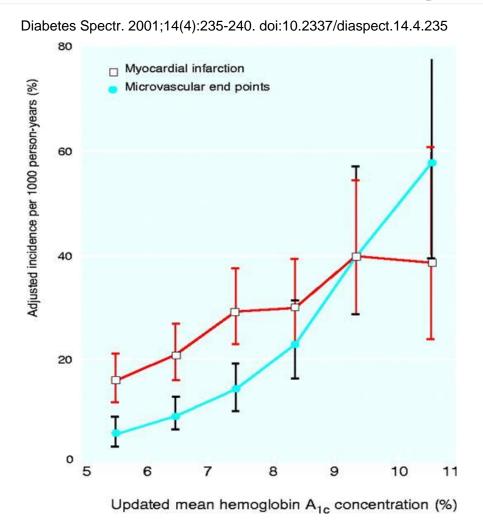
High:

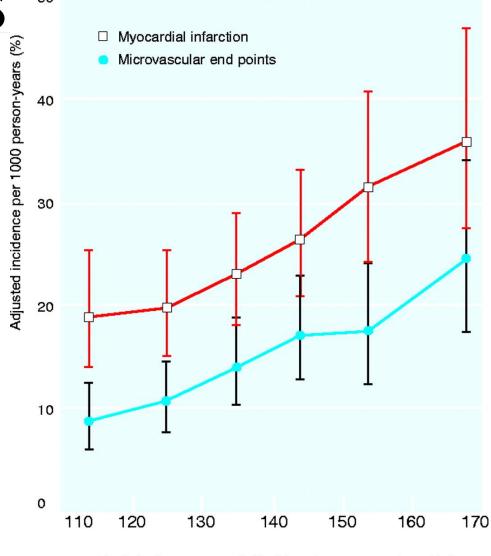
GLP-1 RA (not listed above), metformin, pioglitazone, SGLT2i, sulfonylurea


Intermediate:

DPP-4i

BLOOD PRESSURE


Diabetes Spectr. 2001;14(4):235-240. doi:10.2337/diaspect.14.4.235


UKPDS

	Numb	er of events	
	Intensive	Conventional	$\star NNT$
Glucose control	41	46	20 (95% CI 10-500)
Blood pressure control	51	67	6 (3–10)

*number needed to treat for 10 years to prevent 1 event.

UKPDS

Updated mean systolic blood pressure (mmHg)

Current status of rapid decline in renal function owing to diabetes mellitus and its associated factors.

Setting & Participants	Exposure 8	& Outcomes	Results	
Japan NDB (national database)		ical practice endations	Incidence of 141.50 cases (95% CI 141.07, 141.92) per 1,000 PY	
	SBP	6 categories		
	HbA1c	5 categories	With diabetes mellitus	
29,396,195 individuals underwent specific health	Urine protein	5 categories	Spp Adjusted OR	
= underwent specific health	Hemoglobin	4 categories	SBP Adjusted OK	

Overall, 20.83% of patients with DM had a rapid decline in renal function within the observation period. A rapid decline in renal function was associated with high systolic blood pressure, poor or strict DM control, increased urinary protein excretion, and decreased blood hemoglobin levels.

Conclusion: The rapid decline in renal function for approximately 1 year was associated with classical risks based on big real-world data in the national database of medical insurance in Japan.

Time-centered Approach to Understanding Risk Factors for the Progression of Chronic Kidney Disease

Methods

3682
participants from
Chronic Renal
Insufficiency
Cohort Study

GFR 20 to 70 ml/min/1.73 m²
Age 58 ± 11 years
Black 42%
DM 48%

Stage 4 Stage 3a Stage 3b Stage 5 4.2 0.8 7.9 **Median Time Spent in CKD Years** Years Years **Years** Stages Years less Years less 6.1 1.8 Systolic BP **Poorly** in CKD in CKD ≥140 mmHg stage 3a controlled DM stage 3a Years less Years less 3.3 1.4 in CKD in CKD stage 3b stage 3b

Years less

in CKD

stage 5

0.1

Conclusions There are marked variations in the time spent in the different stages of CKD based on risk factors of interest and stage of disease.

Elaine Ku, Kirsten L. Johansen, and Charles E. McCulloch. Time-centered Approach to Understanding Risk Factors for the Progression of Chronic Kidney Disease. CJASN doi: 10.2215/CJN.10360917.

0.2

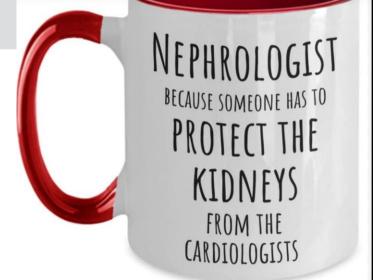
Years less

in CKD

stage 5

	Recommendations	Classa	Level ^b
Recom	In patients with diabetic or non-diabetic moderate-to-severe CKD and confirmed BP ≥130/		
Age gro	80 mmHg, lifestyle optimization and BP-lowering medication are recommended to reduce CVD risk, provided such treatment is well tolerated. 275,766		A
18–69	In adults with moderate-to-severe CKD who are receiving BP-lowering drugs and who have eGFR		
≥ 70 yea	>30 mL/min/1.73 m ² , it is recommended to target systolic BP to 120–129 mmHg, if tolerated.	1	A
DBP tre	Individualized BP targets are recommended for those with lower eGFR or renal transplantation. 274,779		
target	In hypertensive patients with CKD and eGFR > 20 mL/min/1.73 m ² , SGLT2 inhibitors are recommended to improve outcomes in the context of their modest BP-lowering properties. ^{776,777}	1	A
	ACE inhibitors or ARBs are more effective at reducing albuminuria than other BP-lowering agents and should be considered as part of the treatment strategy for patients with hypertension and microalbuminuria or proteinuria. ^{780–782}	lla	В

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BP, blood pressure; CKD, chronic kidney disease, eGFR, estimated glomerular filtration rate; SGLT2, sodium–glucose co-transporter 2.



nHg)						
KD	+ CAD	+ Stroke/TIA				
-130	120-130	120-130				
ble if to	lerated					
0 mmHg if tolerated						
ble if toleratec						

ed patients

2024

ESC

Amazon.com: Gift for nephrologist, Doctor residen...

^aClass of recommendation.

^bLevel of evidence.

Blood Pressure control

2021 HTN Guidelines

Chapter 3: Blood pressure management in patients with CKD, with or without diabetes, not receiving dialysis

• Recommendation 3.1.1

We suggest that adults with high BP and CKD be treated with a target systolic blood pressure (SBP) of <120 mm Hg, when tolerated, using standardized office BP measurement (2B).

Chapter 4: Blood pressure management in kidney transplant recipients (CKD G1T-G5T)

Practice Point 4.1

Treat adult kidney transplant recipients with high BP to a target BP of <130 mm Hg systolic and <80 mm Hg diastolic using standardized office BP measurement (see

Blood Pressure control

2024 CKD Guidelines

Chapter 3: Blood pressure management in patients with CKD, with or without diabetes, not receiving dialysis

• Recommendation 3.1.1

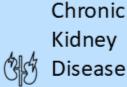
We suggest that adults with high BP and CKD be treated with a target systolic blood pressure (SBP) of <120 mm Hg, when tolerated, using standardized office BP measurement (2B).

Chapter 4: Blood pressure management in kidney transplant recipients (CKD G1T-G5T)

Practice Point 4.1

Treat adult kidney transplant recipients with high BP to a target BP of <130 mm Hg systolic and <80 mm Hg diastolic using standardized office BP measurement (see

₩ N=



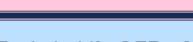
Age

Diabetes

Kidney Disease Exclusion Criteria

Country

Mean Age



BP method

BPROAD

12821

>50

100%

Excluded if eGFR <30 or creatinine >2 mg/dl

Exclude if

- Proteinuria > 1 g/day
- GN

China

63.8

Automated (Omron)

ACCORD

4733

40-79 with CVD or 55-79 with subclinical CVD

100%

Excluded creatinine >1.5 mg/dl

Exclude if

- Proteinuria > 1 g/day
- Organ transplant

USA, Canada

62.2

Automated (Omron)

SPRINT

9261

>55

Excluded

Excluded if eGFR <20

Exclude if

- Proteinuria > 1 g/day
- GN likely/needing IS
- Organ transplant

USA

67.9

Automated (Omron) Mainly unattended

ESPRIT

11255

>50

38.7%

Excluded eGFR < 45

Exclude if

- Proteinuria ≥ 2+ in last 6 months
- GN likely/needing IS
- Organ transplant

China

64.6

Automated (Omron)

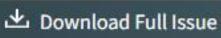
THE LANCET

Between Sept 17, 2019, and July 13, 2020, **11 255 participants** (4359 with diabetes and 3022 with previous stroke) were assigned to intensive treatment (n=5624) or standard treatment hartic (n=5631).

ARTICLES | VOLUME 404, ISSUE 10449, P245-255, JULY 20, 2024

Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial

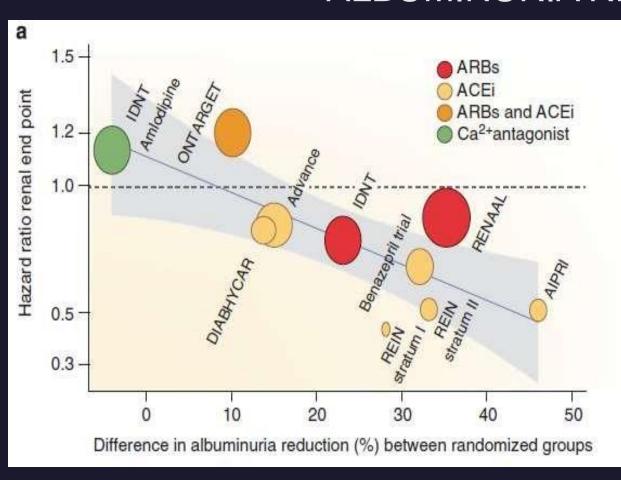
Jiamin Liu, MD * • Yan Li, MD * • Jinzhuo Ge, BM * • Xiaofang Yan, MD * • Haibo Zhang, MD • Prof Xin Zheng, PhD •

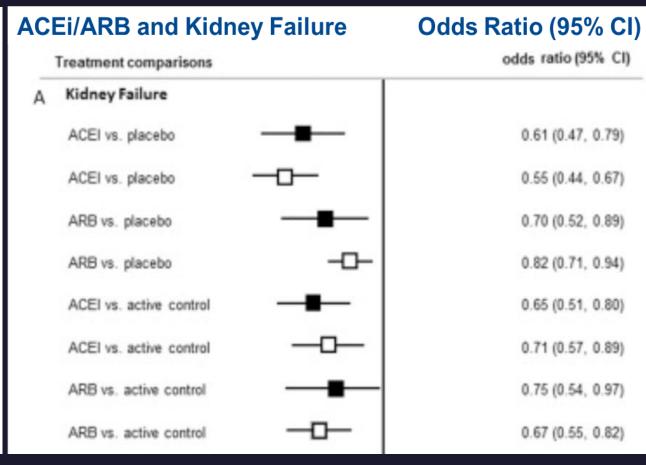

et al. Show all authors • Show footnotes

Published: June 27, 2024 • DOI: https://doi.org/10.1016/S0140-6736(24)01028-6 •

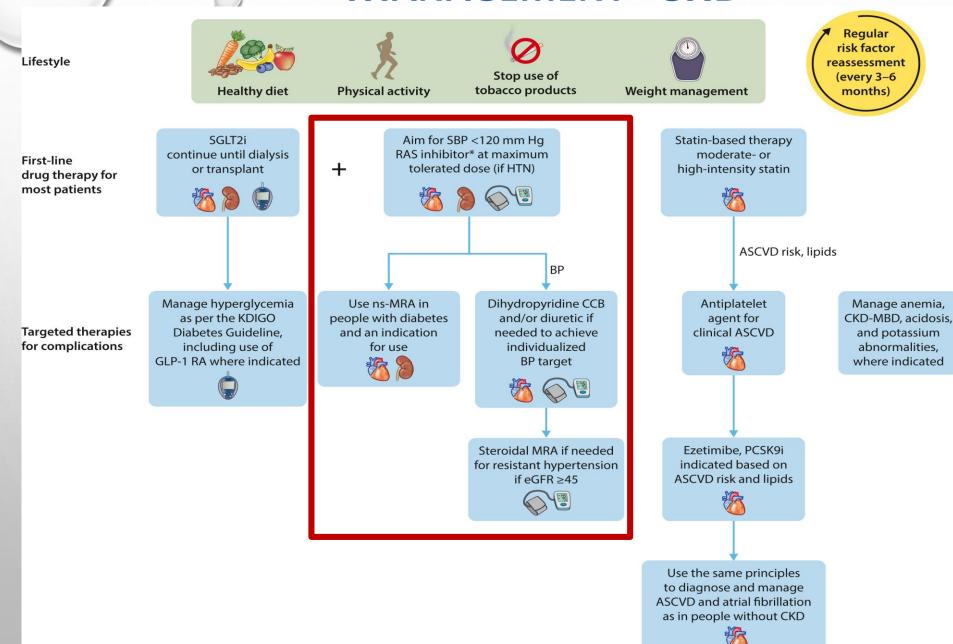
THE LANCET

ARTICLES | VOLUME 404, ISSUE 10449, P245-255, JULY 20, 2024


Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised

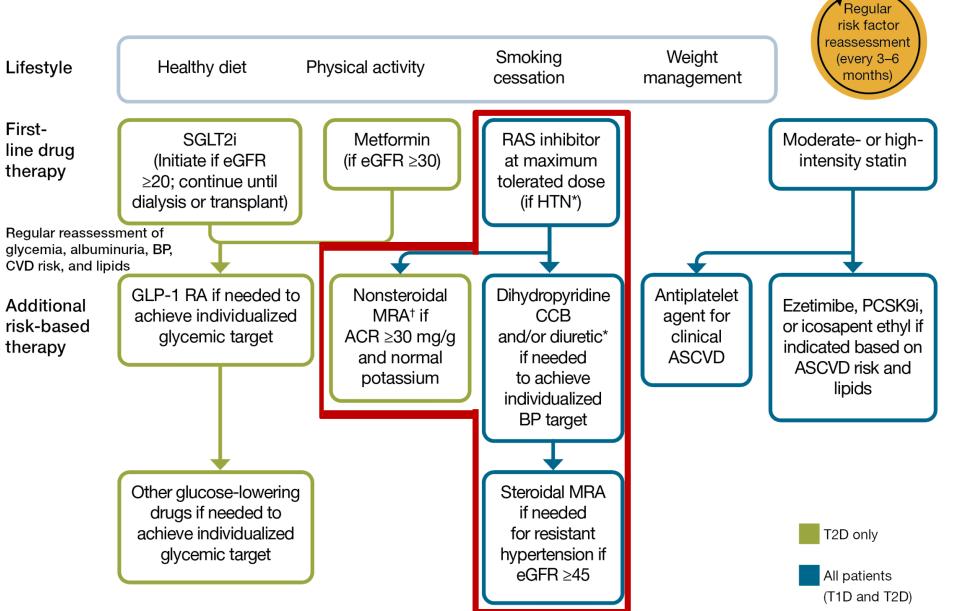

Interpretation

For hypertensive patients at high cardiovascular risk, regardless of the status of diabetes or history of stroke, the treatment strategy of <u>targeting systolic blood</u> <u>pressure of less than 120 mm Hg</u>, as compared with that of less than 140 mm Hg, <u>prevents major vascular events</u>, with minor excess risk.


RAAS in RCTs

ALBUMINURIA REDUCTION

MANAGEMENT- CKD



2024

ACE, angiotensin-converting enzyme inhibitor; ACR, albumin-creatinine ratio; ARB, angiotensin II receptor blocker; ASCVD, atherosclerotic cardiovascular disease; BP, blood pressure; CCB, calcium channel blocker; CGM, continuous glucose monitoring; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycated hemoglobin; HTN, hypertension; LDL-C, low-density lipoprotein cholesterol; MRA, mineralocorticoid receptor antagonist; PCSK9i, proprotein convertase subtilisin/kexin type 9 inhibitor; SGLT2, sodium-glucose cotransporter-2; T2D, Type 2 diabetes; TG, triglycerides

Holistic Approach to Improving Outcomes in People With Diabetes and CKD

American Diabetes Association

2025

RAASi do not reduce risk of death for CKD patients

Effect of losartan and irbesartan, compared to placebo, on the risk of renal composite^{1,2}

	Treatmer	nt group	Placeb	o group						
Renal outcome	Number (%)	Events per 100 P-Y	Number (%)	Events per 100 P-Y					Risk value	<i>P</i> value
RENAAL1							Mate		HR (95% CI)	
Primary composite end point	327 (43.5)	15.9	359 (47.1)	18.1		-	-		0.84 (0.72, 0.98)	0.02
dSCr	162 (21.6)	7.9	198 (26.0)	10.0	<u> </u>		288		0.75 (0.61, 0.92)	0.006
ESRD	147 (19.6)	6.8	194 (25.5)	9.1		-			0.68 (0.58, 0.89)	0.002
All-cause mortality	158 (21.0)	6.8	155 (20.3)	6.6					1.02 (0.81, 1.27)	0.88
					50	30 1	0 -10	-30		
IDNT ²									RR (95% CI)	
Primary composite end point	189 (32.6)	-	222 (39.0)	-		-	-		0.81 (0.67-0.99)	0.03
dSCr	98 (16.9)	7.5	135 (23.7)			-	_		0.71 (0.54-0.92)	0.009
ESRD	82 (14.2)	-	101 (17.8)	-		8:		- 1	0.83 (0.62-1.11)	0.19
All-cause mortality	87 (15.0)	2	93 (16.3)	_				40	0.94 (0.70-1.27)	0.69

0 0.5 1 1.5

Favors treatment Favors placebo

• 1. Brer

What is the role of initiation of ACEi or ARB in advanced chronic kidney disease?

Systematic review and meta-analysis

Ovid Medline & CKD EPI Clinical Trials Consortium

1739 participants from 18 trials

Mean eGFR 22.2 ml/min/1.73 m²

Objective

To compare use of ACEI/ARB Vs. placebo or other antihypertensives in patients with Stage 4 CKD with rates of KFRT and death

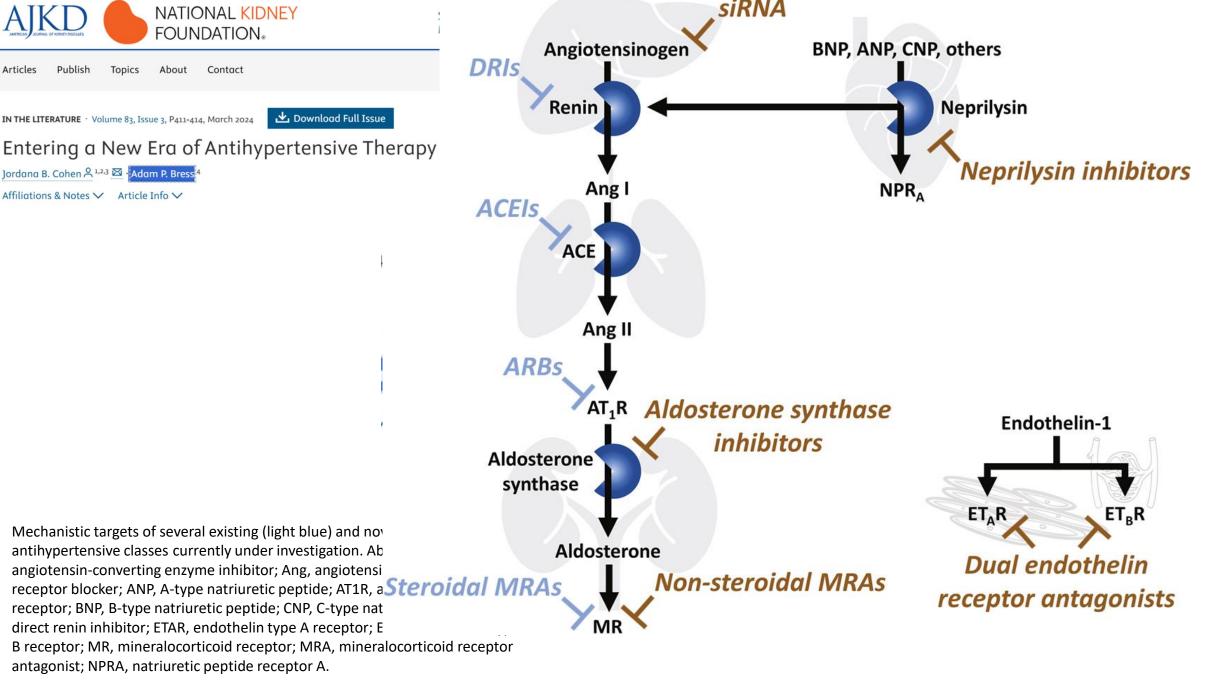
Findings

624 (35.9%) developed KFRT

133 (7.6%) died during a median follow-up of 34 months

KFRT- Kidney failure with renal replacement therapy

Outcomes


ACEi/ARB treatment initiation led to lower risk for KFRT HR 0.66 (95% CI, 0.55 to 0.79)

No risk reduction for risk of death HR 0.86 (95 % CI 0.58-1.28)

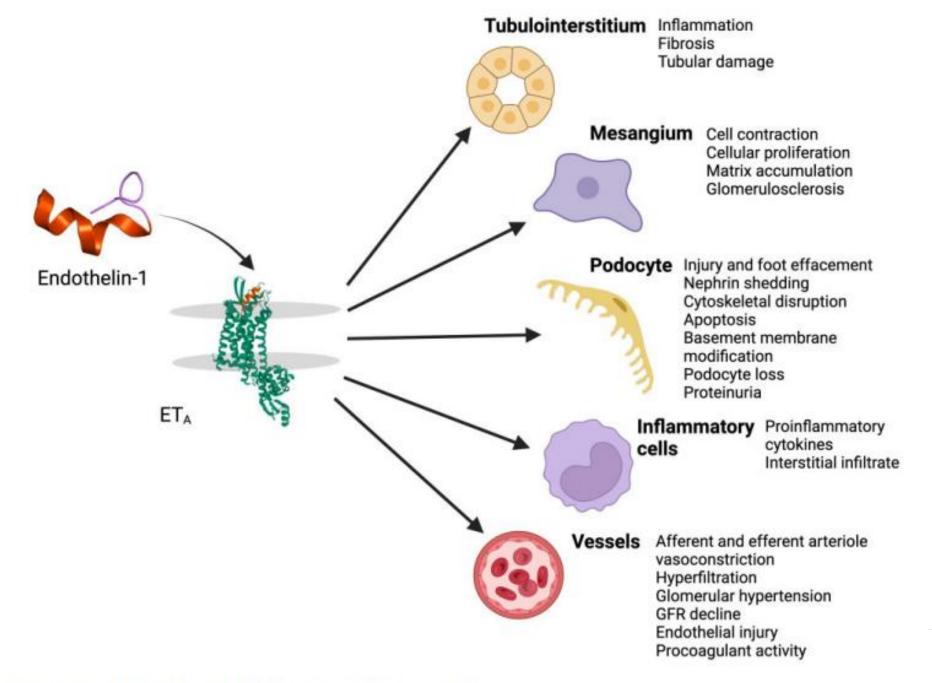
Conclusion: Initiation of ACEi or ARB therapy protects against KFRT, but not death, in people with advanced CKD

Reference: Ku E et al Ann Intern Med. 2024
Jul;177(7):953-963. doi: 10.7326/M23-3236
VA by Nikhil Elenjickal MD, DNB @DrNikhilJ1

Jordana B. Cohen, Adam P. Bress, AJKD 2024

Clinical Kidney Journal, 2024, vol. 17, no. 4, sfae072

https:/doi.org/10.1093/ckj/sfae072


Advance Access Publication Date: 19 March 2024

CKJ Review

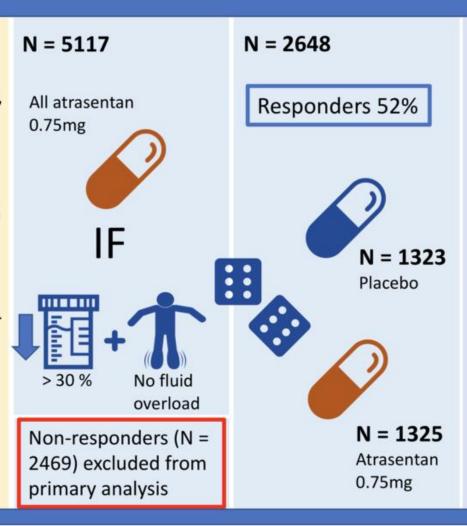
CKJ REVIEW

Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease

Vanja Ivković^{1,2} and Annette Bruchfeld (1)^{3,4}

SONAR

Atrasentan gives a weak signal for improving diabetic nephropathy



UACR: 300 – 5000 mg/dl

Max. RAAS blockade

ESRD, 2x sCr

CV death, AMI, stroke

8%

13%

2%

p = 0.004

p = 0.049

p = 0.20

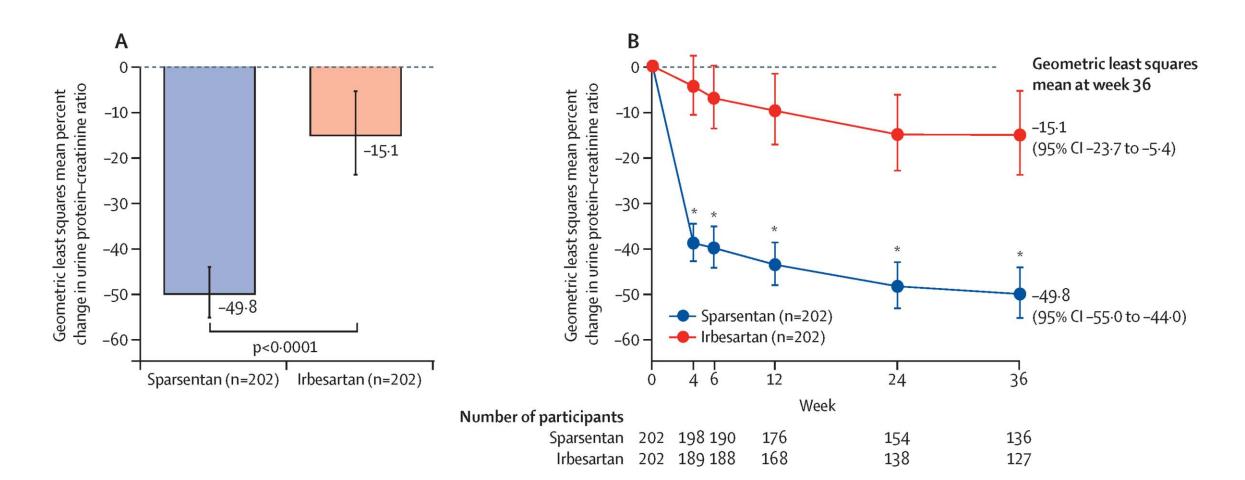
6%

11%

3%

Median follow-up = 2.2 years

Interpretation: Atrasentan reduced the risk of renal events in selected patients with diabetic nephropathy at high risk for developing ESRD.


Heerspink H, Parving H-H, Andress D, Bakris G, Correa-Rotter R, Hou F-F, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebocontrolled trial. Lancet 2019

SPARSANTAN

SPARSANTAN: an Endothelin Receptor Antagonist and Angiotensin 2 Receptor Blocker.

UACR

Is Zibotentan Safe and Efficacious in Retarding Chronic Kidney Disease Progression? (ZENITH-CKD)

18 countries

Randomized, **Double blinded**

Age ≥ 18 to ≤ 90 (Median age 62.8 years)

eGFR ≥ 20 ml/min

UACR 150-5000 mg/g (Median – 565 mg/g)

April 2021 – Jan 2023

Stable dose of ACEi or ARBs for 4 weeks

Randomized into three groups

2:1:2

Zibotentan 0.25 mg

All were on Dapagliflozin 10 mg

Placebo

179

91

177

% Mean change in UACR

(baseline to 12 weeks)

-52.5%

(-59 to -44.9) (P<0.0001)

-47.7%

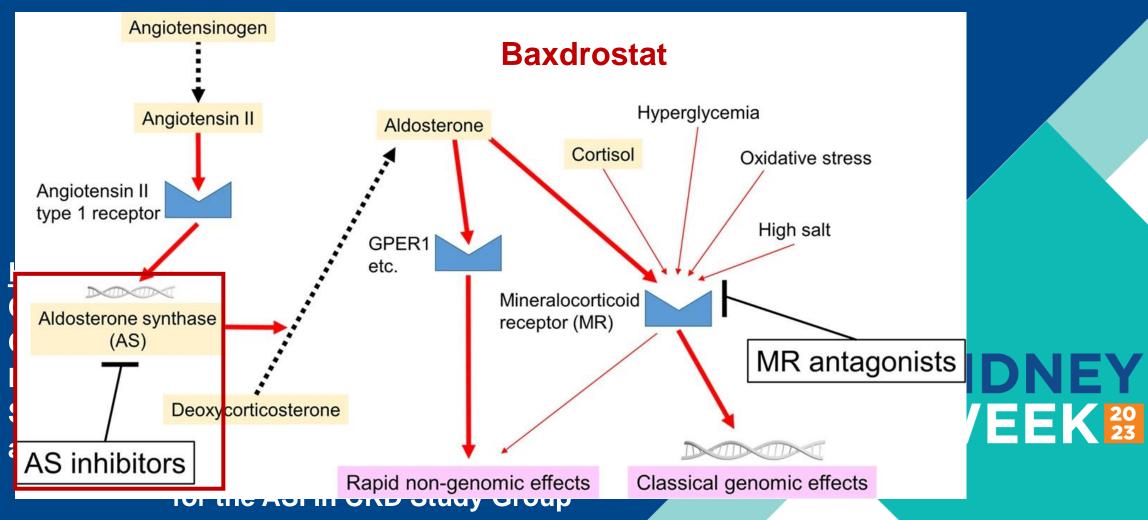
(-55.7 to -38.2) (P=0.0022)

-28.3%

(-37.8 to -17.4) (ref)

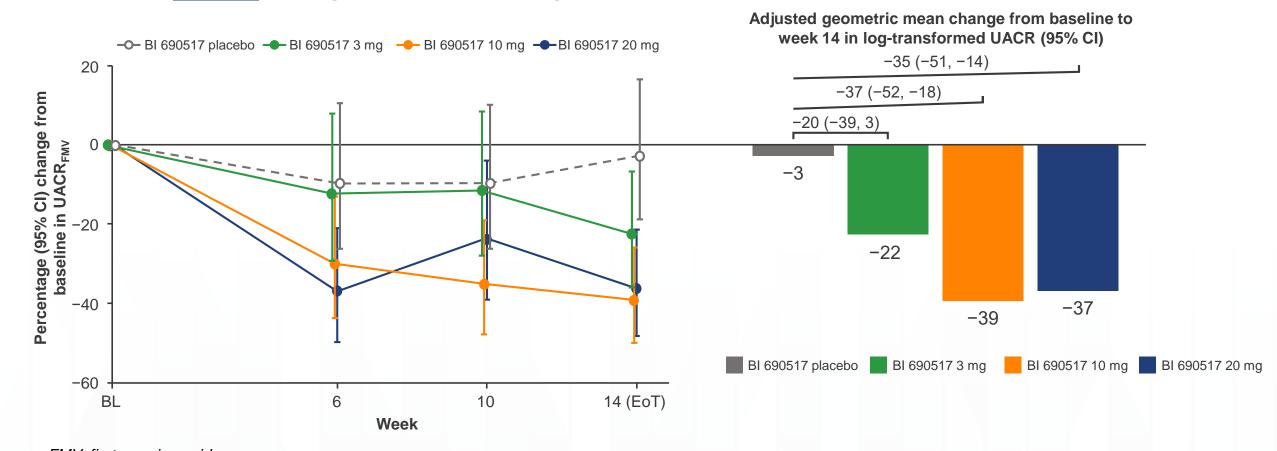
Fluid retention events

18%


9%

8%

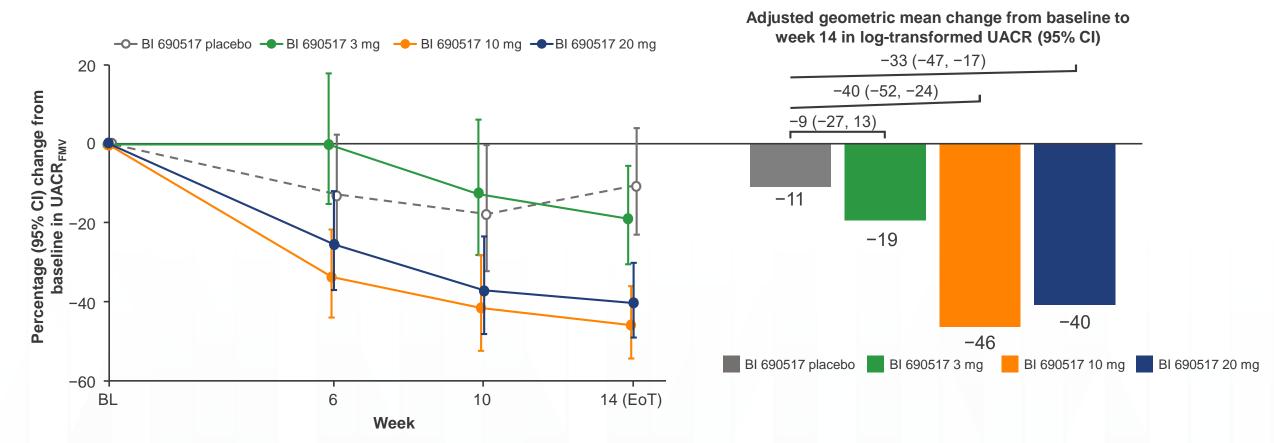
Conclusion: Zibotentan reduced albuminuria with an acceptable tolerability and safety profile in chronic kidney disease patients already receiving currently recommended therapy

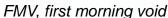

Heerspink HJL et al, Lancet 2023 VA by Dr Sabarinath S MD DM FASN X @sabarivenus

Aldosterone synthase inhibition with or without

Primary endpoint: UACR_{FMV} percentage change from baseline to week 14

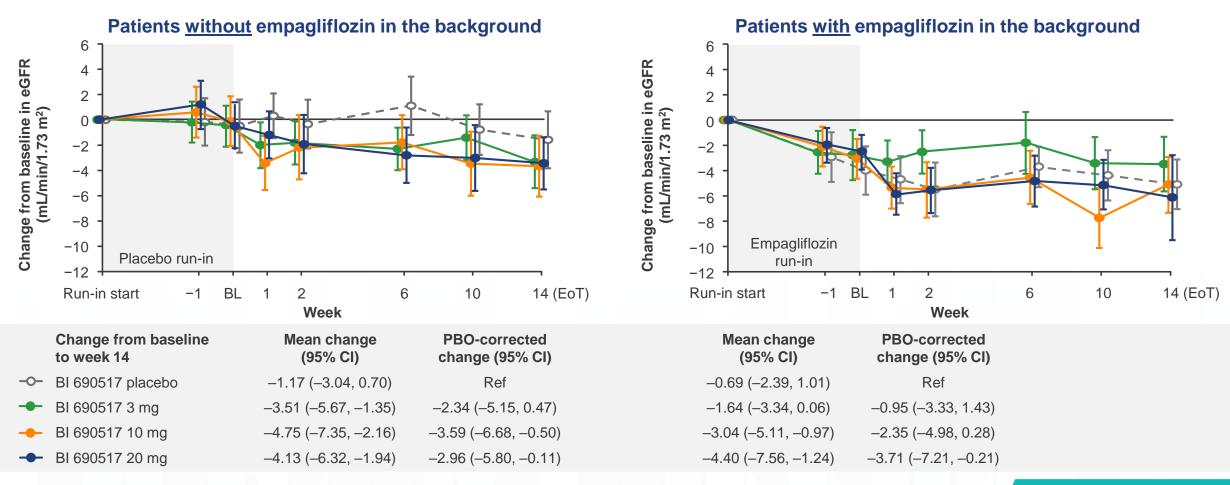
Patients without empagliflozin in the background

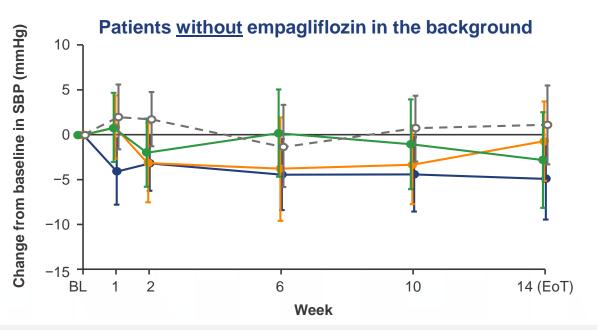


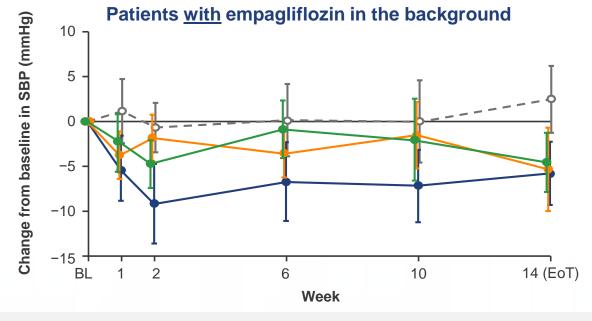


Primary endpoint: UACR_{FMV} percentage change from baseline to week 14

Patients with empagliflozin in the background




Additional endpoint: Change in eGFR


BI 690517 had similar effects on eGFR irrespective of empagliflozin background treatment

Additional endpoint: Change in systolic blood pressure

Change	from	baseline	to
week 14			

- BI 690517 placebo
- BI 690517 3 mg
- BI 690517 10 mg
- BI 690517 20 mg

Mean change (95% CI)

1.09 (-3.35, 5.53)

-2.80 (-8.15, 2.56)

-0.72 (-5.18, 3.74)

-4.94(-9.44, -0.43)

PBO-corrected change (95% CI)

Ref

-3.89(-10.73, 2.95)

-1.81(-8.10, 4.48)

-6.03(-12.44, 0.38)

Mean change (95% CI)

2.47 (-1.30, 6.23)

-4.56(-7.94, -1.17)

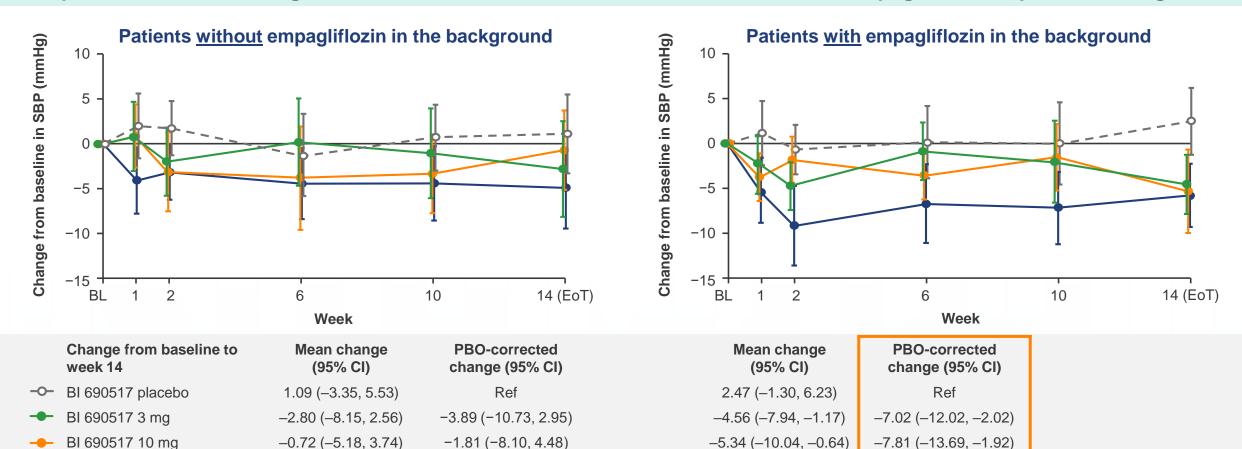
-5.34 (-10.04, -0.64)

-5.78 (-9.37, -2.19)

PBO-corrected change (95% CI)

-7.02(-12.02, -2.02)

Ref


-7.81 (-13.69, -1.92)

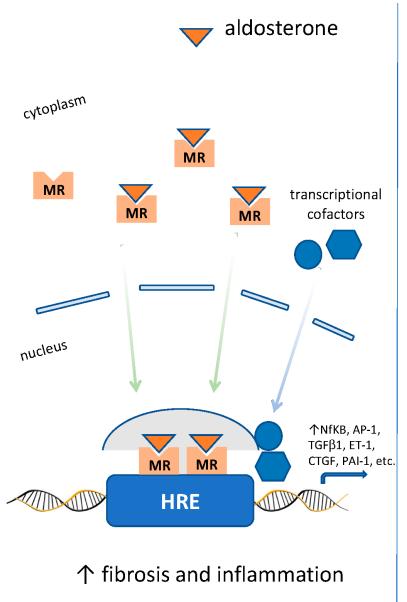
-8.25 (-13.40, -3.09)

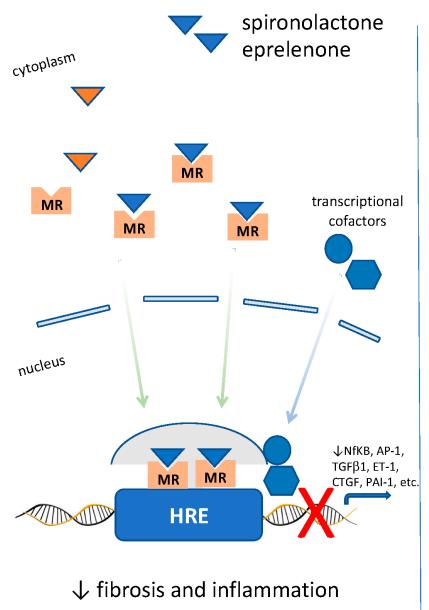
Additional endpoint: Change in systolic blood pressure

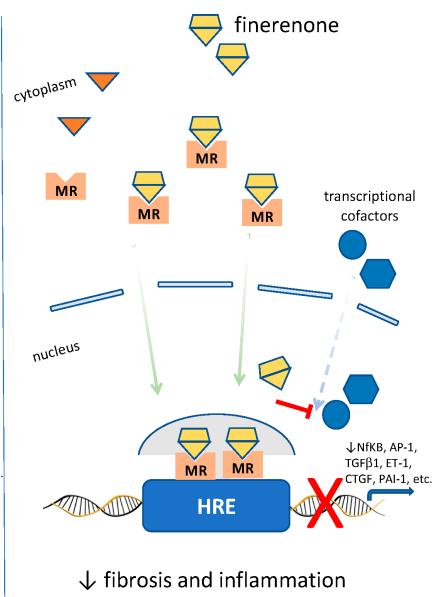
More pronounced SBP changes were observed with BI 690517 in combination with empagliflozin vs placebo background

-5.78 (-9.37, -2.19)

-8.25(-13.40, -3.09)


-6.03(-12.44, 0.38)


BI 690517 20 mg


-4.94(-9.44, -0.43)

MRAS

pharmaceutics Jessica Kearney, andLuigi Gnudi et al., 2023

Hypertension

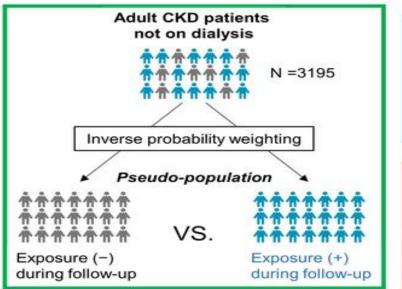
AHA Journals Journal Information

All Issues

Subjects Features

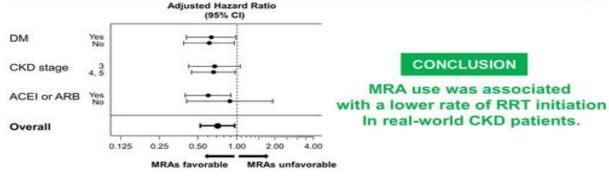
Resc Educ

Home > Hypertension > Vol. 79, No. 3 > Mineralocorticoid Receptor Antagonist Use and Hard Renal

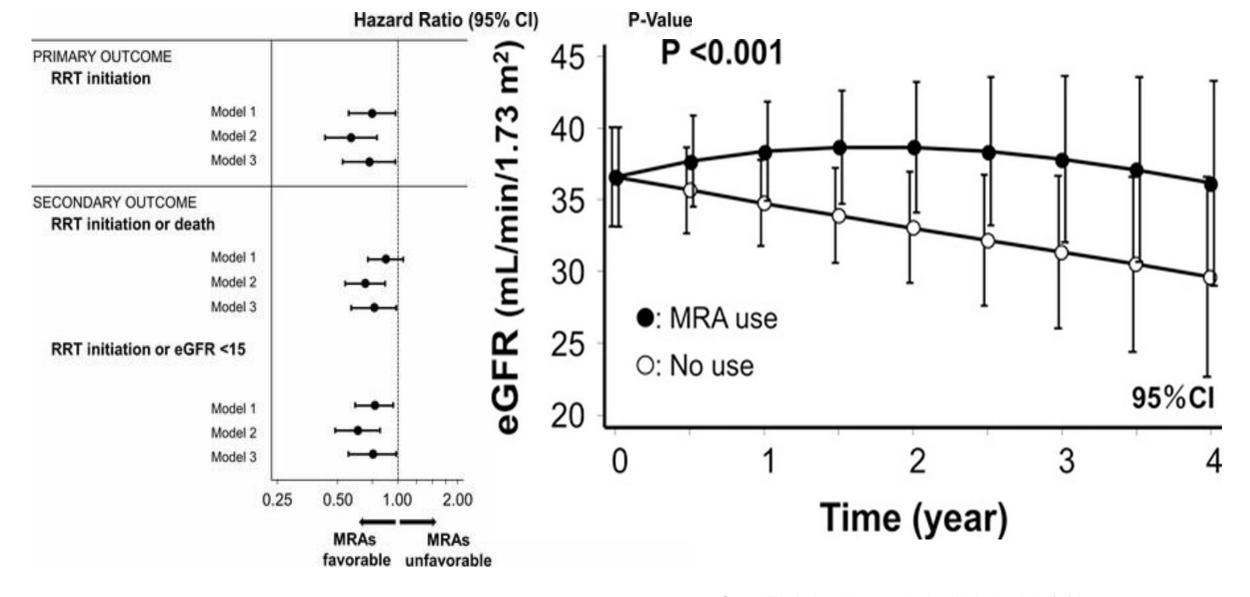


Mineralocorticoid Receptor Antagonist Use and Hard Renal Outcomes in Real-World Patients With Chronic Kidney Disease

Tatsufumi Oka, Yusuke Sakaguchi, Koki Hattori, Yuta Asahina, Sachio Kajimoto, Yohei Doi, Jun-Ya Kaimori ⊡ and Yoshitaka Isaka

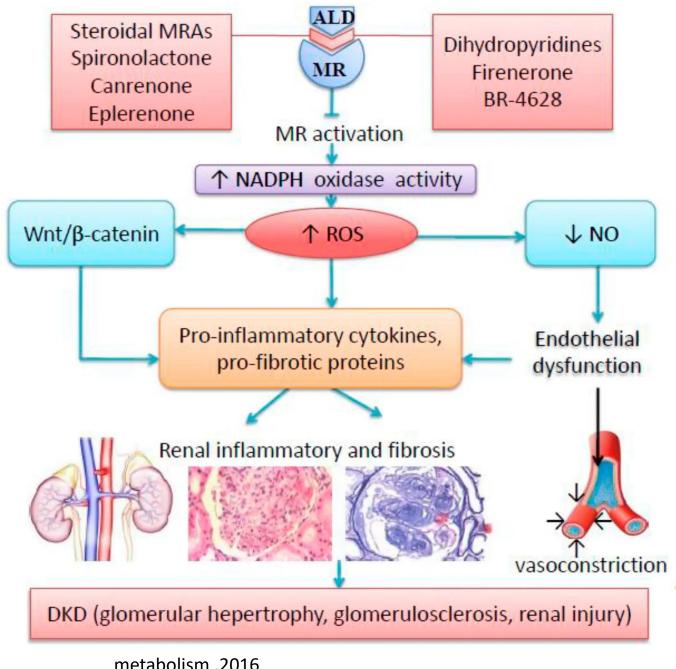

Originally published 14 Jan 2022 | https://doi.org/10.1161/HYPERTENSIONAHA.121.18360 | Hypertension. 2022;79:679–689

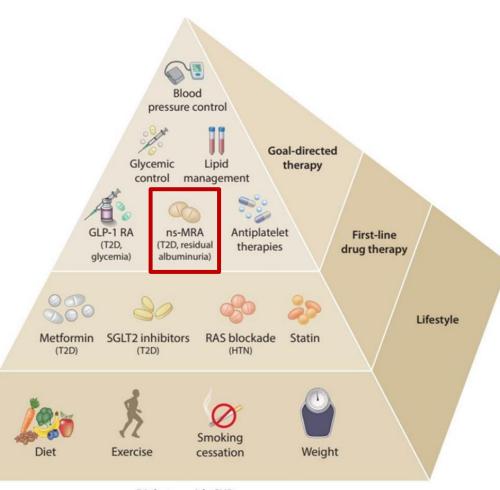
The main inclusion criteria were estimated glomerular filtration rate \geq 10 and <60 mL/min per 1.73 m2 and follow-up \geq 90 days.



The **primary outcome was RRT initiation**, defined as the initiation of chronic hemodialysis, peritoneal dialysis, or kidney transplantation.

The **secondary outcomes** were the composite of **death from any cause and RRT initiation**





Tatsufumi Oka. Hypertension. Mineralocorticoid Receptor Antagonist Use and Hard Renal Outcomes in Real-World Patients With Chronic Kidney Disease, Volume: 79, Issue: 3, Pages: 679-689, DOI: (10.1161/HYPERTENSIONAHA.121.18360)

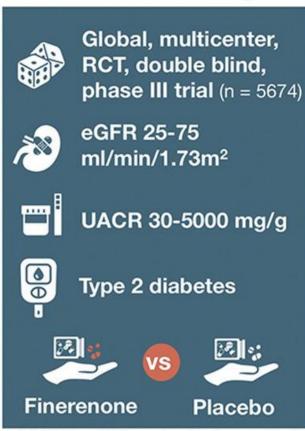
© 2022 The Authors. Hypertension is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

nsMRAs

Diabetes with CKD

Finerenone in Predominantly Advanced CKD in Type 2 Diabetes With or Without SGLT-2i Therapy

Methods


Subgroup Analysis of FIDELIO-DKD

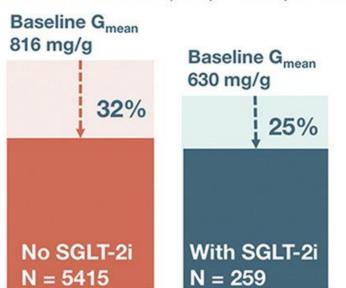
Finerenone (with or without SGLT-2i)

FIDELIO-DKD design

Findings

*Compared to those not treated with SGLT-2i

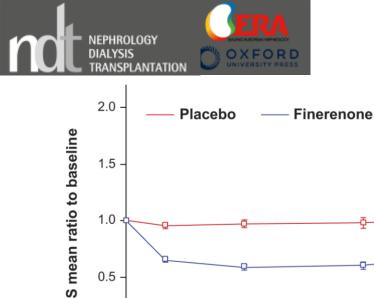
Finerenone with SGLT-2i use characteristics at baseline*


Higher eGFR

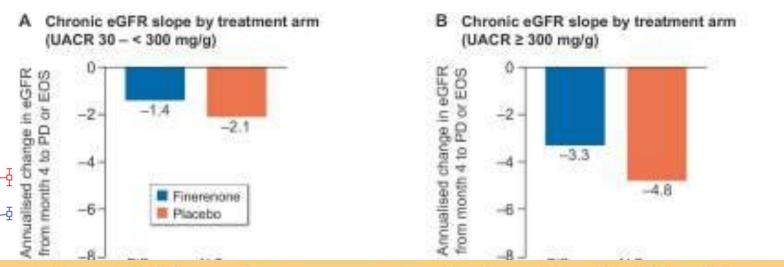
Lower UACR

UACR reduction (compared to placebo)

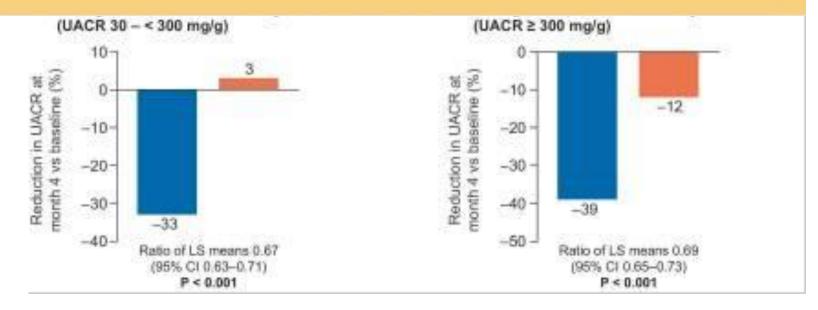
Compared to placebo, the kidney and CV benefits of Finerenone were consistent irrespective of SGLT2i use


Patients on SGLT-2i had fewer hyperkalemia events

SGLT-2i, sodium glucose cotransporter-2 inhibitor; RCT, randomized controlled trial; UACR, urine albumin creatinine ratio; CV, cardiovascular; G_{mean}, geometric mean

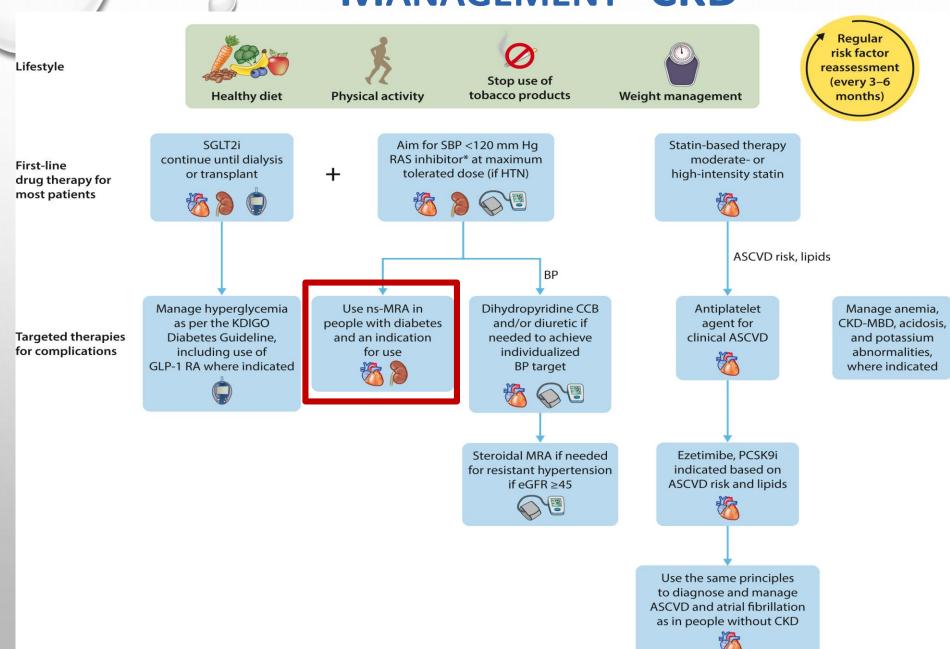

Rossing et al, 2022

Visual abstract by: Sophia Ambruso, DO Sophia kidney Conclusion UACR improvement was observed with finerenone in patients with CKD and T2D already receiving SGLT-2i at baseline and benefits on kidney and cardiovascular outcomes appear consistent irrespective of SGLT-2i use.



0.5

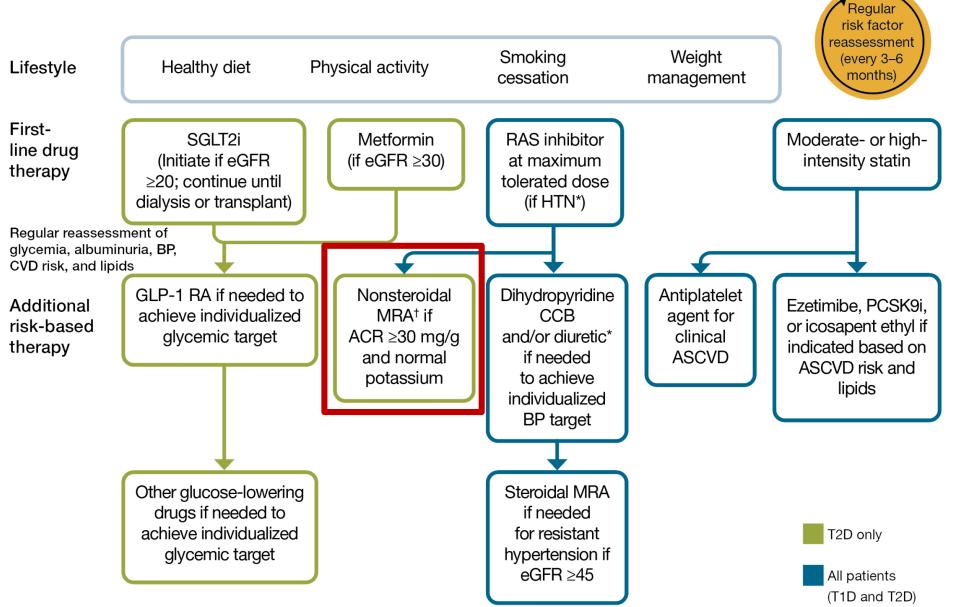
Nephrol Dial Transplant. 2023 Feb



Finerenone protects against CV events and kidney disease progression in patients with T2D and early- or late-stage CKD.

Nephrol Dial Transplant. 2023 Feb; 38(2): 372–383. Published online 2022 Apr 22. doi: 10.1093/ndt/gfac157

MANAGEMENT- CKD



2024

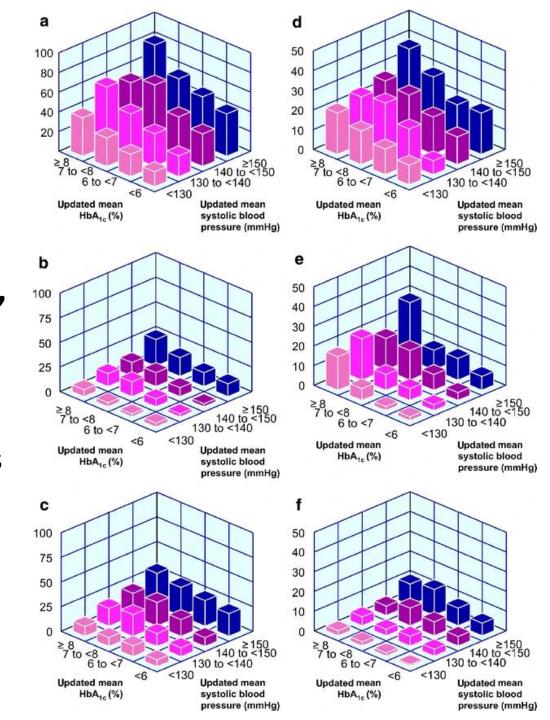
ACE, angiotensin-converting enzyme inhibitor;
 ACR, albumin-creatinine ratio; ARB,
 angiotensin II receptor blocker; ASCVD,
 atherosclerotic cardiovascular disease; BP,
 blood pressure; CCB, calcium channel blocker;
 CGM, continuous glucose monitoring; eGFR,
 estimated glomerular filtration rate; GLP-1 RA,
 glucagon-like peptide-1 receptor agonist;
 HbA1c, glycated hemoglobin; HTN,
 hypertension; LDL-C, low-density lipoprotein
 cholesterol; MRA, mineralocorticoid receptor
 antagonist; PCSK9i, proprotein convertase
 subtilisin/kexin type 9 inhibitor; SGLT2,
 sodium-glucose cotransporter-2; T2D, Type 2
 diabetes; TG, triglycerides

Holistic Approach to Improving Outcomes in People With Diabetes and CKD

American Diabetes Association

2025

APPROACH PLAN



Incidence of **UKPDS** composite endpoints in 4,320 patients, as rate per 1,000 person-years.

- A- Any diabetes-related endpoint,
- B- diabetes-related deaths,
- C- all-cause mortality, d myocardial infarction,
- E- microvascular disease,
- F- stroke.

Values are for 16 different combinations of updated mean HbA1c and updated mean SBP. Unadjusted rates are shown for the three primary and three secondary composite endpoints

I. M. Stratton et al., Diabetologia 2006

Chapter 3: SGLT2 inhibitors

1A

3.7.1: We recommend treating patients with type 2 diabetes, CKD, and an eGFR \geq 20 ml/ min per 1.73 m² with an SGLT2i.

1A

3.7.2: We recommend treating adults with CKD with an SGLT2i for the following: ≥ 20 ml/ min per 1.73 m² with urine ACR ≥ 200 mg/g (≥ 20 mg/mmol), or heart failure, irrespective of level of albuminuria.

3.7.3: We suggest treating adults with eGFR 20 to 45 ml/min per 1.73 m² with urine ACR <200mg/g (20 mg/mmol) with an SGLT2i.

Chapter 3: Non-Steroidal MRAs

3.8.1: We suggest a nonsteroidal mineralocorticoid receptor antagonist with proven kidney or cardiovascular benefit for adults with T2D, an eGFR >25 ml/min per 1.73 m², normal serum potassium concentration, and albuminuria (>30 mg/g [>3 mg/mmol]) despite maximum tolerated dose of RAS inhibitor.

Chapter 3: GLP1-RA

3.9.1: In adults with T2D and CKD who have not achieved individualized glycemic targets despite use of metformin and SGLT2 inhibitor treatment, or who are unable to use those medications, we recommend a longacting GLP-1 RA.

Chapter 3: Statins

3.15.1.1: In adults aged ≥50 years with eGFR <60 ml/min per 1.73 m² but not treated with chronic dialysis or kidney transplantation (GFR categories G3a–G5), we recommend treatment with a statin or statin/ezetimibe combination (1A)

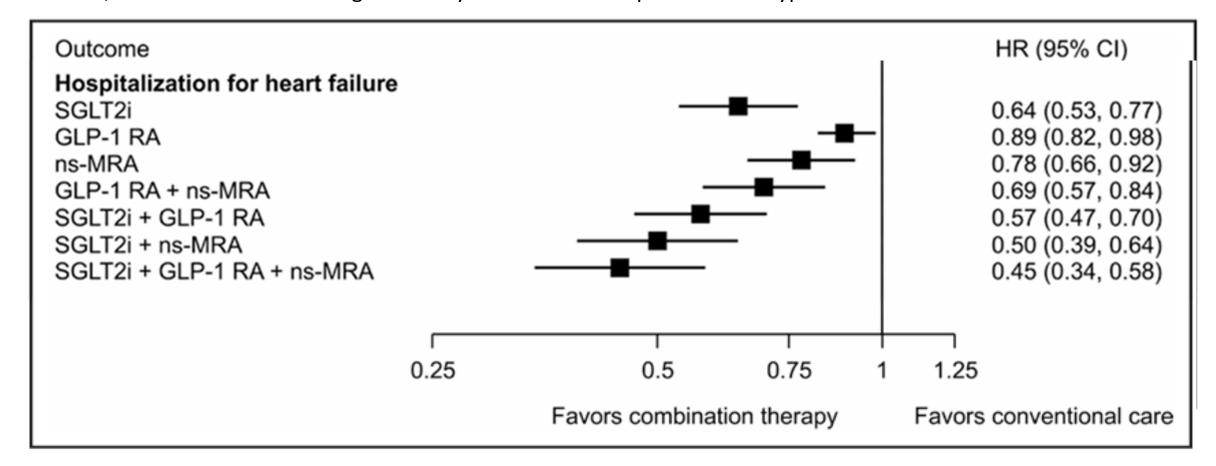
3.15.1.2: In adults aged \geq 50 years with CKD and eGFR \geq 60 ml/min per 1.73 m² (GFR categories G1–G2), we recommend treatment with a statin (1B).

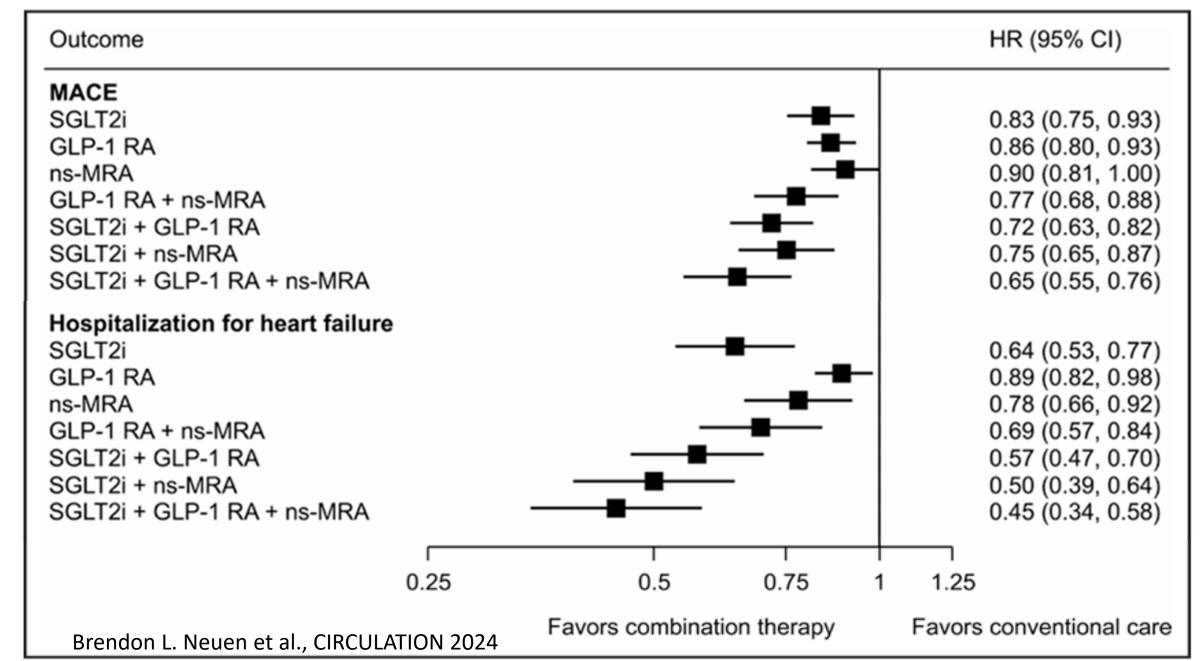
3.15.1.3: In adults aged 18–49 years with CKD but not treated with chronic dialysis or kidney transplantation, we suggest statin treatment in people with one or more of the following (2A):

- known coronary disease (myocardial infarction or coronary revascularization),
- diabetes mellitus, prior ischemic stroke, or
- estimated 10-year incidence of coronary death or
- nonfatal myocardial infarction >10%

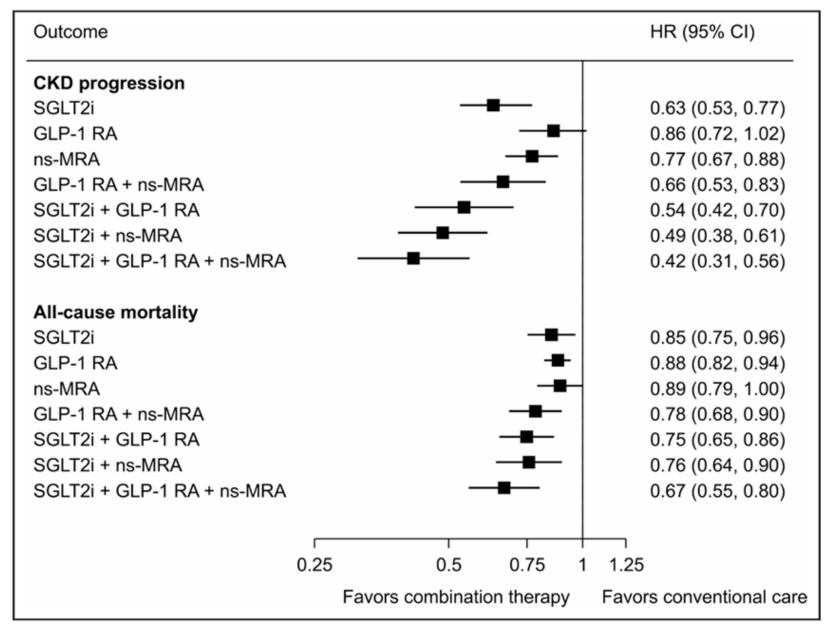
Circulation 2024

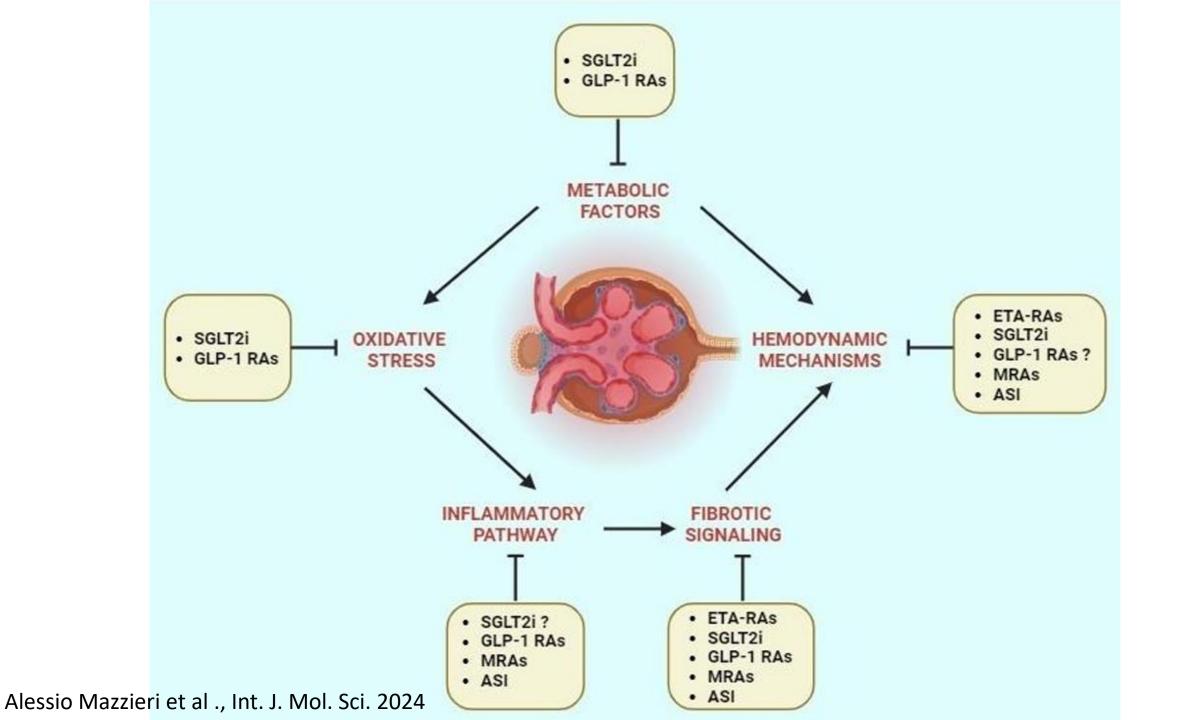
ORIGINAL RESEARCH ARTICLE




Estimated Lifetime Cardiovascular, Kidney, and Mortality Benefits of Combination Treatment With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Nonsteroidal MRA Compared With Conventional Care in Patients With Type 2 Diabetes and Albuminuria

Brendon L. Neuen, MBBS, MSc, PhD; Hiddo J.L. Heerspink, PhD; Priya Vart, PhD; Brian L. Claggett, PhD; Robert A. Fletcher, MSc; Clare Arnott, MBBS, PhD; Julianna de Oliveira Costa, PhD; Michael O. Falster, PhD; Sallie-Anne Pearson, PhD; Kenneth W. Mahaffey, MD; Bruce Neal, MB ChB, PhD; Rajiv Agarwal, MD; George Bakris, MD; Vlado Perkovic, MBBS, PhD; Scott D. Solomon, MD; Muthiah Vaduganathan, MD, MPH


Estimated treatment effects on **cardiovascular outcomes** with **SGLT2i, GLP-1 RA, and ns-MRA**, alone and in combination, when added to renin-angiotensin system blockade in patients with type 2 diabetes.


Estimated treatment effects on **cardiovascular outcomes** with **SGLT2i, GLP-1 RA, and ns-MRA**, alone and in combination, when added to renin-angiotensin system blockade in patients with type 2 diabetes.

Estimated treatment effects on CKD progression and all-cause mortality with SGLT2i, GLP-1 RA, and ns-MRA, alone and in combination, when added to renin-angiotensin system blockade in patients with type 2 diabete

Brendon L. Neuen et al., CIRCULATION 2024

SGLT2 inhibitors

- ↓ glomerular hypertension
- ↑ HIF-2α (improved kidney tissue hypoxia)
- ↓ inflammation and fibrosis
- ↓ circulating volume
- ↑ natriuresis with ↑RAAS →
 ↑Angiotensin 1-7 → MAS receptor
 activation (potentiated by use of
 ACEis or ARBs)

Non-steroidal mineralocorticoid antagonists

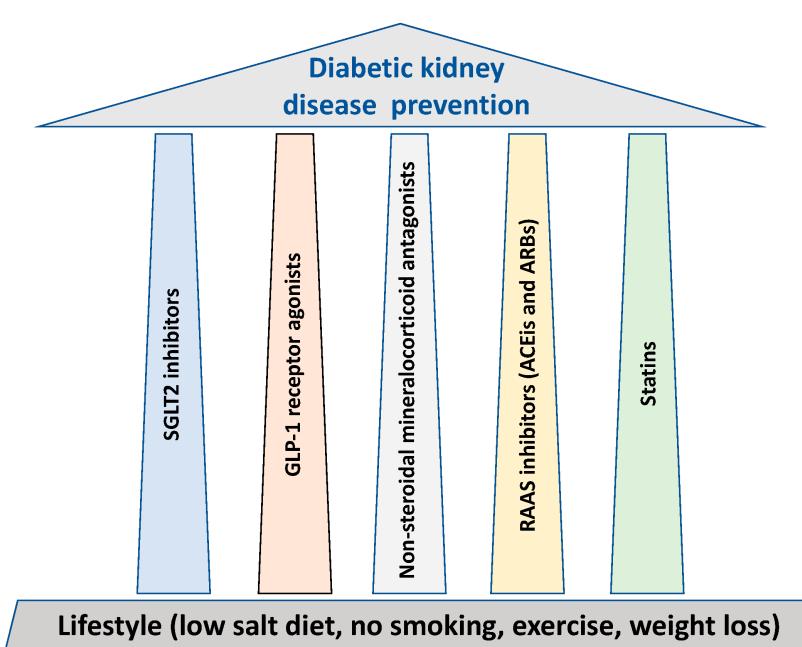
- ↓ inflammation and fibrosis

Renal protection

Statins

- ↓ lipids
- ↑ cardiovascular protective effects (pleiotropic)

RAAS inhibitors


- ↓ glomerular hypertension
- ↓ inflammation and fibrosis

GLP1 receptor agonist

- ↓ angiotensin-2
- 个Natriuresis

Lifestyle (low salt diet, no smoking, exercise, weight loss)

