Cardiorenal Syndrome: Key points towards better management

Dr. M M Kapoor
Consultant Nephrologist
Amiri Hospital
Kuwait

URDU COUPLET

• DARD E DIL DARD E GURDE

ASHIK BANYA AAP NE

Introducing Nephrocardiology

Parta Hatamizadeh (D)

CJASN 17: 311-313, 2022. doi: https://doi.org/10.2215/CJN.10940821

Introduction

Although the term nephrocardiology, or in some instances cardionephrology, has been sporadically used in the medical literature (1,2), its implication has been mainly limited to cardiorenal syndrome and cardiac complications of CKD. Moreover, it has not consistently implied the same denotation in its different appearances and, until recently, it had never been clearly described as a medical discipline with a defined scope (3,4).

Despite the importance of cardiorenal syndrome and cardiac complications of CKD, the interaction between nephrology and cardiovascular medicine is much broader and includes important subjects that are not well addressed in either of the two specialties

Therefore, the next step was taken with the introduction of a practical classification system (6), which instead of indicating the initiating organ, signified the "dominant" clinical presentation at any point in time. By classifying cardiorenal syndrome into the following seven categories, it specifies the clinical finding that needs to be "addressed first": hemodynamic; uremic; vascular; neurohormonal (including electrolytes and acid-base disorders); anemia and iron metabolism; mineral metabolism; and malnutrition-inflammationcachexia. This classification system can help clinicians streamline a patient's care plans over the course of the illness and communicate their findings and management plans among themselves (7). By demonstrating the broadness and complexity of the pathophysiologic

Division of Nephrology, University of Florida, Gainesville, Florida

Correspondence:

Dr. Parta Hatamizadeh, Division of Nephrology, University of Florida Health, 1600 SW Archer Road, Room CG-98, P.O. Box 100224, Gainesville, FL 32610. Email: hatamizadehp@ufl.edu Cardiorenal Med 2024;14:123–128 DOI: 10.1159/000537785 Received: January 4, 2024 Accepted: February 8, 2024 Published online: February 14, 2024

Advances in Cardiorenal Medicine: The Year 2023 in Review

Amir Kazory^a Claudio Ronco^{b, c}

^aDivision of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, USA; ^bDepartment of Nephrology, San Bortolo Hospital and International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy; ^cDepartment of Medicine, University of Padova, Padova, Italy

Keywords

Heart failure · Kidney disease · Cardiorenal medicine · Cardionephrology · Year 2023

Conceptual Considerations in Cardiorenal Nexus

In late 2023, the American Heart Association (AHA) published a presidential advisory to describe a new multisystem entity called cardiovascular-kidney-metabolic (CKM) syndrome [1]. The authors defined CKM syndrome as a systemic disorder characterized by

Nephrol Dial Transplant (2022) 37: 2386–2397 https://doi.org/10.1093/ndt/gfac153 Advance Access publication date 19 April 2022

Long-term impact of cardiorenal syndromes on major outcomes based on their chronology: a comprehensive French nationwide cohort study

Jean-Michel Halimi^{1,2,3}, Jean-Baptiste de Fréminville¹, Philippe Gatault^{1,2}, Arnaud Bisson⁴, Juliette Gueguen¹, Nicolas Goin¹, Bénédicte Sautenet^{1,3,5}, Valentin Maisons¹, Julien Herbert^{5,6}, Denis Angoulvant^{2,4} and Laurent Fauchier ^{6,4}

¹Néphrologie-Immunologie Clinique, Hôpital Bretonneau, CHU Tours, Tours, France, ²EA4245, University of Tours, Tours, France, ³INI-CRCT, Vandœuvre-lès-Nancy, France, ⁴Service de Cardiologie, Centre Hospitalier Universitaire Trousseau et Faculté de Médecine, EA4245, Université de Tours, Tours, France, ⁵INSERM U1246 SPHERE, Université de Tours-Université de Nantes, Tours, France and ⁶Service d'information médicale, d'épidémiologie et d'économie de la santé, Centre Hospitalier Universitaire et Faculté de Médecine, EA7505, Université de Tours, Tours, France

Correspondence to: Jean-Michel Halimi; E-mail: halimi@med.univ-tours.fr

CD A DITTO AT A DETD A CT

EPIDEMIOLOGY AND OUTCOMES

HF STATS 2024: Heart Failure Epidemiology and Outcomes Statistics An Updated 2024 Report from the Heart Failure Society of America

WRITING COMMITTEE MEMBERS*
Biykem Bozkurt, MD, PhD (Chair)

Tariq Ahmad, MD, MPH
Kevin Alexander, MD
William L. Baker, PharmD
Kelly Bosak, PhD, APRN
Khadijah Breathett, MD, MS
Spencer Carter, MD
Mark H. Drazner, MD, MSc
Shannon M. Dunlay, MD MS
Gregg C. Fonarow, MD
Stephen J. Greene, MD
Paul Heidenreich, MD
Jennifer E. Ho, MD
Eileen Hsich, MD
Nasrien E. Ibrahim, MD
Lenette M. Jones, PhD, RN

Sadiya S. Khan, MD, MSc
Prateeti Khazanie, MD, MPH
Todd Koelling, MD
Christopher S. Lee, RN, PhD
Alanna A. Morris, MD, MSc
Robert L. Page II, PharmD
Ambarish Pandey, MD
Mariann R. Piano, RN, PhD
Alexander T. Sandhu, MD, MS
Josef Stehlik, MD, MPH
Lynne W. Stevenson, MD
John Teerlink, MD
Amanda R. Vest, MBBS MPH
Clyde Yancy, MD
Boback Ziaeian, MD, PhD

KEY POINTS IN EPEDEMIOLOGY

One Out 4 Individuals will Develop heart failure in their life time USA.

Prevalence of kidney disease in heart failure patients 26% to 45%.

CVD in patients with CKD. 63% in Stage 1-2 and 75% in CKD 4-5.

Rev Esp Cardiol. 2024;77(1):50-59

Original article

Prevalence and clinical profile of kidney disease in patients with chronic heart failure. Insights from the Spanish cardiorenal registry

Review > Nat Rev Nephrol. 2022 Nov;18(11):696-707. doi: 10.1038/s41581-022-00616-6. Epub 2022 Sep 14.

Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease

Kunihiro Matsushita ^{1 2 3}, Shoshana H Ballew ^{4 5}, Angela Yee-Moon Wang ⁶, Robert Kalyesubula ^{7 8}, Elke Schaeffner ⁹, Rajiv Agarwal ¹⁰

Cardiac dysfunction

Renal dysfunction

Defination

- **Definition of Cardiorenal Syndrome (CRS)**: A condition where heart and kidney dysfunction are interconnected and mutually exacerbate one another.
- Types of CRS:
 - **Type 1**: Acute heart failure leading to acute kidney injury (AKI).
 - Type 2: Chronic heart failure leading to chronic kidney disease (CKD).
 - Type 3: Acute kidney injury leading to acute heart failure.
 - Type 4: Chronic kidney disease leading to heart failure.
 - Type 5: Both heart and kidney failure due to systemic conditions (e.g., diabetes, sepsis).

NEW EMERGING CONCEPT IS CADIOVASCULAR KIDNEY METABOLIC HEALTH

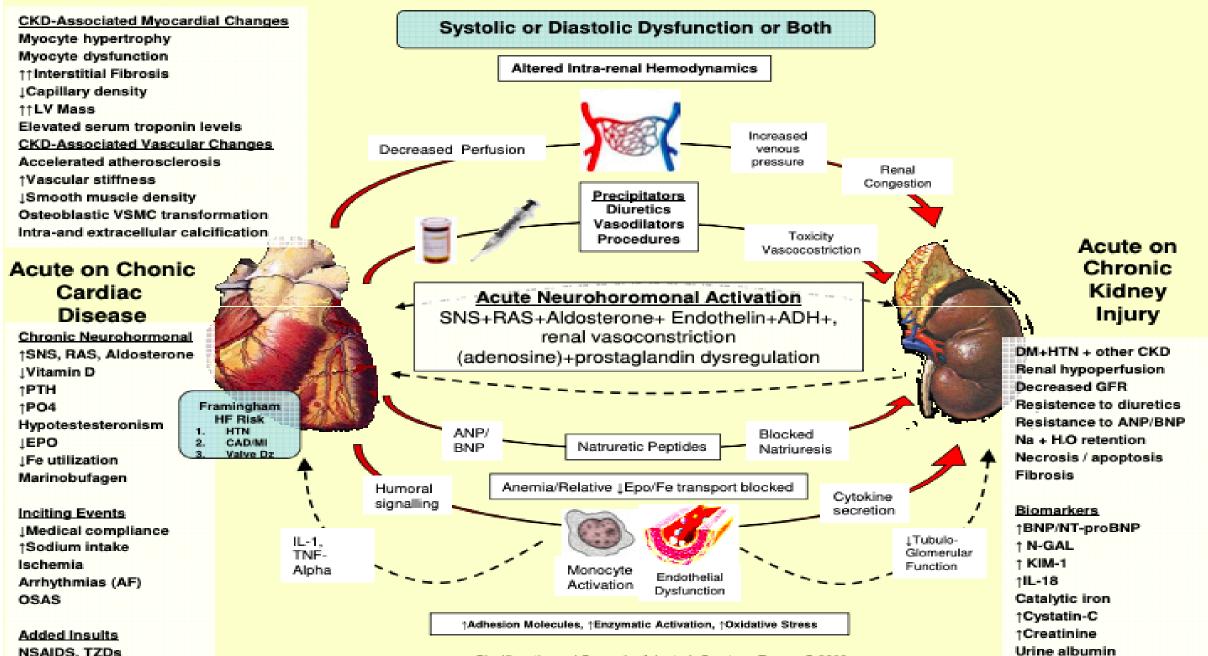
Index patient

- 54 year Male
- DM HYPERTENSION DYSLIPIDEMIC IHD LOW EF 25%
- ER with Progressive Breathlessness and Swelling Of the Whole Body for a weeks duration.
- On Examination Restless
- Gained 8kg of weight HR 98/ min , JVP raised RR 30/ min at rest BP 110/70 Mmof Hg
- Pale, Edematous all over with Decreased breath sounds at the bases, and LVS3 gallop, Has a large palpable Liver with evidence of Ascites.
- Investigations Reveal HB 10.8 G/dl Low Iron saturation ,Bun 23 mmol/l and Creatnine -176umol/l (baseline 100 umol/l),Na 128 Mmol/l , Serum K 5.0 mmol/l Hco3 18 mmol/l. HBA1c 7.1
- Urine R/M Protein 1 + No active sediments
- He Is On Lasix 40 Bid, Telmisartan 40 Mg OD, Plavix 75mg OD, hydralazine, Long acting Insulin OD, Glucophage 100 XR and Novonorm 1mg TID, Rusvastatin 10 Mg OD

Index patient Continued

• Despite The guidelines for the treatment Of HF the application to patients remain dismal.

What Went Wrong With this patient? What is pathophysiology?


What Extra could be done?

25 Aug 2023

What are the recent Updates?

2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure ESC Clinical Practice Guidelines

Cardio-Renal Syndrome Pathophysiology

Pathophysiology

- Interaction between Heart and Kidney: Impaired cardiac function reduces renal perfusion, contributing to kidney dysfunction. Low Cardiac output and Increased venous pressure
- Reduced renal function leads to fluid and electrolyte imbalances, worsening heart failure. NEPHROSARCA or renal Congestion
- Vicious cycle: Decreased renal blood flow → Activation of RAAS (Renin-Angiotensin-Aldosterone System) and SNS (Sympathetic Nervous System).
- INFLAMMATION AND FIBROSIS

 RAAS & SNS activation causes vasoconstriction, fluid retention, and increased cardiac workload. Declining Renal and Cardiac functions.

Treatment Continued

• Improvement in cardiac function (if heart failure is the predominant cause)

• .Restoration of kidney function (addressing renal injury or dysfunction).

• Managing fluid balance: Reducing volume overload while maintaining perfusion.

• Minimizing complications such as electrolyte imbalances, acidosis, and arrhythmias.

DIURETICS

Loop Diuretics

Thiazide Diuretics

Mineralocorticoids Receptor antagonist

Acetazolamide

Vaptans

Combination Diuretic Therapy to Counter Renal Sodium **Avidity in Acute Heart Failure**

Trials and Tribulations

Amir Kazory (1)

In contrast to significant advances in the management of patients with chronic heart failure over the past few years, there has been little change in how patients with acute heart failure are treated. Symptoms and signs of fluid overload are the primary reason for hospitalization of patients who experience acute decompensation of heart failure. Intravenous loop diuretics remain the mainstay of therapy in this patient population, with a significant subset of them showing suboptimal response to these agents leading to incomplete decongestion at the time of discharge. Combination diuretic therapy, that is, using loop diuretics along with an add-on agent, is a widely applied strategy to counter renal sodium avidity through sequential blockade of sodium absorption within renal tubules. The choice of the second diuretic is affected by several factors, including the site of action, the anticipated secondary effects, and the available evidence on their efficacy and safety. While the current guidelines recommend combination diuretic therapy as a viable option to overcome suboptimal response to loop diuretics, it is also acknowledged that this strategy is not supported by strong evidence and remains an area of uncertainty. The recent publication of landmark studies has regenerated the interest in sequential nephron blockade. In this article, we provide an overview of the results of the key studies on combination diuretic therapy in the setting of acute heart failure and discuss their findings primarily with regard to the effect on renal sodium avidity and cardiorenal outcomes.

Division of Nephrology, Hypertension, and Renal Transplanta University of Flori Gainesville, Florid

Dr. Amir Kazory Division of Hypertension, and Renal Transplanta University of Flori College of Medici 1600 SW Archer R Gainesville, FL 32 Email: Amir.Kazor medicine.ufl.edu

CJASN 18: 1372–1381, 2023. doi: https://doi.org/10.2215/CJN.000000000000188

Diuretics

- Loop Diuretics Main stay Na- K-2Cl Channel Ascending Loop Of Henle
- DOSE Trial High Dose.
- IV dose twice than home dose.
- ESC doubling the dose of if urinary Na <50meq/l or UOP <100ml/hr post 6 Hours of administration. BOLUS Vs Continuous.
- Thiazides Block the Na-Cl Cotransporter in DCT
- Loop USE hypertrophy of DCT with increase in Na-Cl transporter
- CLOROTIC Trial Greater efficacy in Combination of loop with thiazides
- Hydrochlorthiazide, Metalozone, Clorthalidone

Clinical Practice guidelines: Circuation 2022:145(18):e895-1032 DOSE
Thiazide Uses In advanced CKD J Am S Hypertens 2012:6(5)299-308 CLOROTIC

Drug	Site of Action	Duration of Action	Common Starting Dosage	Maximum Dosage	Common Side Effects
Loop diuretics	Inhibition of Na-K-CI co-transporter in the thick ascending loop of Henle				Hypokalaemia, hypomagnesaemia, hyperuricaemia, hypocalcaemia, hyponatraemia, otoxicity
Furosemide		7 h	20 to 40 mg once or twice	600 mg	
Bumetanide		4 to 6 h	0.5 to 1.0 mg once or twice	10 mg	
Torasemide		12 to 16 h	10 to 20 mg once	200 mg	
Ethacrynic acid		6 h	25–50 mg once or twice	200 mg	

Thiazide-like diuretion	es Inhibition of Na-Cl transporter at distal nephron				Hypokalaemia, hypomagnesaemia, hypercalcaemia, hyponatraemia, hyperuricaemia
Chlorothiazide		6 to 12 h	250 to 500 mg	Once or twice	1,000 mg
Chlorthalidone		24 to 72 h	12.5 to 25 mg once	100 mg	
Indapamide		36 h	2.5 mg once	20 mg	
Potassium-sparing	Inhibition of mineralcarticoid receptor or its				Hyperkalaemia
diuretics	effectors at distal nephron				
Amiloride		24 h	5 mg once	20 mg	
Triamterene		7 to 9 h	50 to 75 mg twice	200 mg	
Spironolactone		1 to 3 h	12.5 to 25.0 mg	50 mg	Gynecomastia
			once		

Diuretics

- Acetazolamide:
- CA Inhibitor acts at Proximal Tubule Of Nephron
- Incorporated as a diuretic in case of significant metabolic alkalosis.
- Reduces sodium reabsorption Via Na/H Exchanger ,leading to Greater natriuresis.
- Effect is Lost after approx. 3 days
- IV Acetazolamide 500 Mg Iv Bolus

Preprints are preliminary reports that have not undergone peer review.

They should not be considered conclusive, used to inform clinical practice or referenced by the media as validated information.

Efficacy of Combining Acetazolamide with Loop Diuretics Versus Using Double Dose Loop Diuretics for Decongestion in Patients with Chronic Kidney Disease: A Randomized Controlled Trial

Jiranat Sriswasdi ben,jiranat@gmail.com

Phramongkutklao Hospital and College of Medicine

Acetazolamide in Acute Decompensated Heart Failure with Volume Overload (ADVOR)
 N Engl J Med 2022;387:1185-1195

Diuretics Continued

- Vasopressin Antagonists
- Tolvaptan a selective V2 antagonist ,blocks the insertion of aquaporins into the distal tubule of the kidney and leads to Aquaresis.
- Everest Trial
- Randomized trial of 4133 patients with ADHF showed greater weight loss in Tolvaptan arm
- Addition of Tolvaptan could be considered among patients needing additional decongestion and hyponatremia.

EVEREST out come Trial . JAMA 2007 ; 297(12)1319-1331

Continued

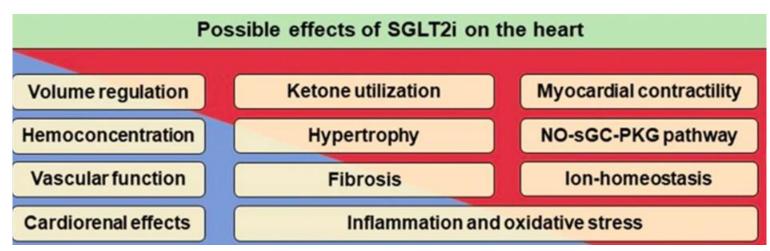
- ACE / ARB & Neprilysin Inhibitors
- Activation OF RAAS
- Blockade HELP in both HFrEF and HFpEF and CKD.
- SOLVD Trial
- PARADIGM trial & PARAGON trial
- Myocardial Stretch NP
- Inhibition of Neprilysin ,a metalloprotein Degrades Natriuretic Peptide Benefits both HPrEF and HPpEF and CKD when combined with ARB (Sacubitril/Valsartan)

Clinical Research

Contd.

- Renin angiotensin aldosterone System and SNS activation
- MRA
- DIURETICS DCT
- ANTI INFLAMMATORY
- ANTI FIBROTIC
- SIDE EFEECTS
- Non Steroidal MINERALOCORTICOIDS ANATAGONIST

Volume 151, Issue 1, 7 January 2025; Pages 45-58 https://doi.org/10.1161/CIRCULATIONAHA.124.072011



ORIGINAL RESEARCH ARTICLE

Efficacy and Safety of Finerenone Across the Ejection Fraction Spectrum in Heart Failure With Mildly Reduce Preserved Ejection Fraction: A Prespecified Analysis of the FINEARTS-HF Trial

Treatment Contd

- SGLT2i
- FIRST LINE THERAPY IN GUIDELINES BOTH FOR HEART FAILURE DIABETIC KIDNEY DISEASE AND OTHER SUBTYPES OF KIDNEY DISORDERS.
- SGLT2 I leads to a wide range of improved Clinical Outcomes, including overall survival, cardiovascular outcomes, HF hospitalizations and kidney failure.

▶ Sci Rep. 2023 Sep 23;13:15922. doi: <u>10.1038/s41598-023-42989-z</u> ☑

SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: a systematic review and meta-analysis

Thomas A Mavrakanas ^{1,8}, Michael A Tsoukas ², James M Brophy ³, Abhinay Sharma ³, Karim Gariani ⁴

▶ Author information ▶ Article notes ▶ Copyright and License information

Contd

- Vericiguat
- It helps by reducing oxidative stress, increasing cyclic GMP, and improving clinical HF
- By stimulating cardiac myosin, a protein responsible for converting chemical energy into the mechanical force that helps the heart contract, omecamtiv mecarbil may improve cardiac muscle performance.

European Journal of Heart Failure (2023) **25**, 248–259 doi:10.1002/eihf.2763

RESEARCH ARTICLE

European Journal of Heart Failure (2021) 23, 1313-1321

RESEARCH ARTICLE

Efficacy of omecamtiv mecarbil in heart failure with reduced ejection fraction according to N-terminal pro-B-type natriuretic peptide level: insights from the GALACTIC-HF trial

Renal function and the effects of vericiguat in patients with worsening heart failure with reduced ejection fraction: insights from the VICTORIA (Vericiguat Global Study in Subjects with HFrEF) trial

Treatment Continued

• β-Blocker therapy has consistently shown to be an effective therapy in reducing the risk of all-cause mortal-ity and combined end points of all-cause/cardio vascular death or HF hospitalization in patients with HFrEF and HFpEF

European Heart Journal (2018) 39, 26–35 European Society doi:10.1093/eurheartj/ehx564 FASTTRACK CLINICAL RESEARCH

Heart failure/cardiomyopathy

Current Problems in Cardiology 49 (2024) 1023.

Contents lists available at ScienceDirect

Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials

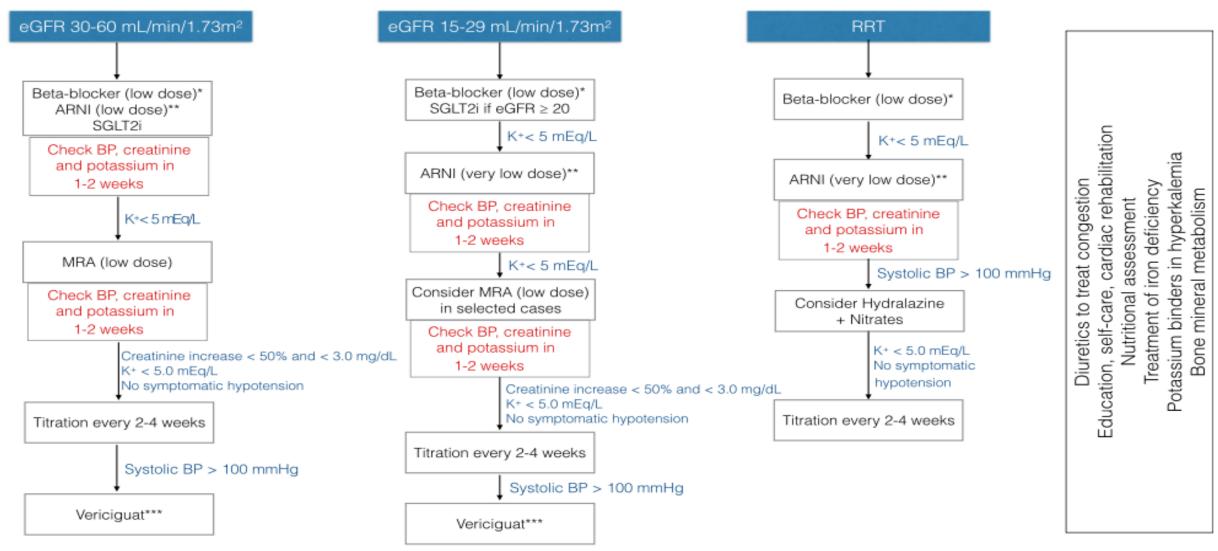
Current Problems in Cardiology

journal homepage: www.elsevier.com/locate/cpcardiol

Invited Review Article

Beta-blocker therapy in heart failure with preserved ejection fraction (B-HFpEF): A systematic review and meta-analysis

•		_			
Scie	ntta	c + 1	MICH	an	\sim
Jule		-	viu	CII	ue


Scientific Evidence

Higher							
Weak/Absent	Moderate	Moderate Strong		Strong	Moderate	Weak/Absent	
ACEI SGLT2I Vericiguat ARB H-ISDN MRA Digoxin ARNI Ivabradine BBL Omecamtiv-Mecarbil			Stage 5 eGFR < 15 mL/min/1.73m²			ACEI SGLT2i Vericiguat ARB H-ISDN MRA Digoxin ARNI Ivabradine BBL Omecamtiv-Mecarbil	
ARNI SGLT2i Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ACEI BBL MRA ARB		Stage 4 eGFR 15-29 mL/min/1.73m²	ACEi SGLT2i Omecamtiv-Mecarbil Vericiguat Digoxin	ARB MRA	ARNI BBL H-ISDN Ivabradine	
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2i MRA BBL	Stage 3B eGFR 30-44 Stage 3A eGFR 45-59 mL/min/1.73m ²	ACEI ARNI SGLT2i MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine			
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2I MRA BBL	Stage 2 eGFR 60-89 mL/min/1.73m ²	ACEI ARNI SGLT2I MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine			
Omecamtiv-Mecarbil Vericiguat H-ISDN Ivabradine Digoxin	ARB	ACEI ARNI SGLT2I MRA BBL	Stage 1 eGFR ≥ 90 mL/min/1.73m²	ACEI ARNI SGLT2i MRA BBL ARB Omecamtiv-Mecarbil Vericiguat Digoxin H-ISDN Ivabradine			

All Cause Mortality

CV Death / HF Hospitalization

HFrEF therapy depending on eGFR

^{*} Evaluate blood pressure and heart rate before starting.

^{**} Evaluate blood pressure, creatinine and potassium before starting. Initiate if systolic BP is > 100 mmHg and K < 5 mEq/L *** In < 6 months from worsening HF. Titration every 4 weeks if systolic blood pressure is >100 mmHg.

Index Patient

- Diuretics Loop +Thiazides
- SGLT2 I
- Enteresto
- MRA
- B Blockers
- Had Hyperkalemia Was Given Sodium Zirconium Cryosilicate (Lokelma)
- General Measures
- Improved Symptoms
- Improved Renal Functions almost Reached Base line
- Discharged With an appointment CRT Device

CRT

- Cardiac resynchronization therapy (CRT) uses a special type of pacemaker called a biventricular pacemaker to treat heart failure.
- This pacemaker sends electrical pulses to make the ventricles pump at the same time.
- Cardiac resynchronization therapy with defibrillator (CRT-D) is preferred in patients who meet the established criteria. The need for cardiac pacing is increased three-fold in dialysis patients.

Review Article

Cardiac Resynchronization Therapy in the Cardiorenal Syndrome

Margot K. Davis and Sean A. Virani

Division of Cardiology, Gordon and Leslie Diamond Health Care Centre, The University of British Columbia, Vancouver, BC, Canada V5Z 1M9

Correspondence should be addressed to Margot K. Davis, margot.k.davis@gmail.com

Danian

Cardiac Device Therapy in Patients with Chronic Kidney Disease: An Update

Bogdan Caba ^{1,2,†}, Laura Vasiliu ^{1,2,†}, Maria Alexandra Covic ^{1,*}, Radu Sascau ^{1,2}, Cristian Statescu ^{1,2}

Asist Devices Continued

MIRACLE TRIAL

Review Article

Cardiac Resynchronization Therapy in the Cardiorenal Syndrome

Emerging Individualized Approaches in the Management of Acute Cardiorenal Syndrome With Renal Assist Devices

Pieter Martens, MD, PhD,^a Daniel Burkhoff, MD, PhD,^b Jennifer A. Cowger, MD, MS,^c Ulrich P. Jorde, MD,^d Navin K. Kapur, MD,^e W.H. Wilson Tang, MD^a

HIGHLIGHTS

- Renal assist devices are being developed targeting acute cardiorenal syndrome.
- These devices can target venous, arterial, and interstitial/lymphatic axis alterations.
- Ongoing trials are necessary to determine the overall risk benefit rate of these devices.
- Individualized phenotyping could help with identifying the optimal specific renal assist

Index Patient

- Patient was admitted again after 6 months.
- Same general Condition with superimposed Chest Infection.
- Had Hypotension Enteresto was stopped, Required Nor adrenaline.
- Had Progressive Worsening of Renal Functions with Oliguria despite maximum doses of Diuretics (Sequential blockade). Electrolytes were corrected.
- Diuretic Resistance HIGH INCIDENCE BAD PROGNOSIS.

 Had to be supported by CVVHF with ultrafiltration.Improved and is on Permanent HDF

Kidney Replacement in CRS

- DECONGESTION IS THE CORNER STONE
- Uremic Milleu. Refractory Hyperkalemia
- Severe and refractory Metabolic Alkalosis Hypokalemia
- Pre and Post Opeartive

Cardiorenal Medicine

Review Article

Cardiorenal Med 2024;14:320–333 DOI: 10.1159/000539547 Received: March 17, 2024 Accepted: May 13, 2024 Published online: May 29, 202

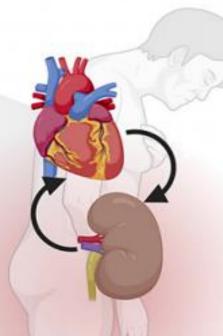
Kidney Replacement Therapies and Ultrafiltration in Cardiorenal Syndrome

Luz Yareli Villegas-Gutiérrez^a Julio Núñez^{b, c} Kianoush Kashani^d Jonathan S. Chávez-Iñiguez^{a, e}

Uremic milleu

↓ Urinary output

↓ Urinary sodium


Persistent congestion

Diuretic adverse effects

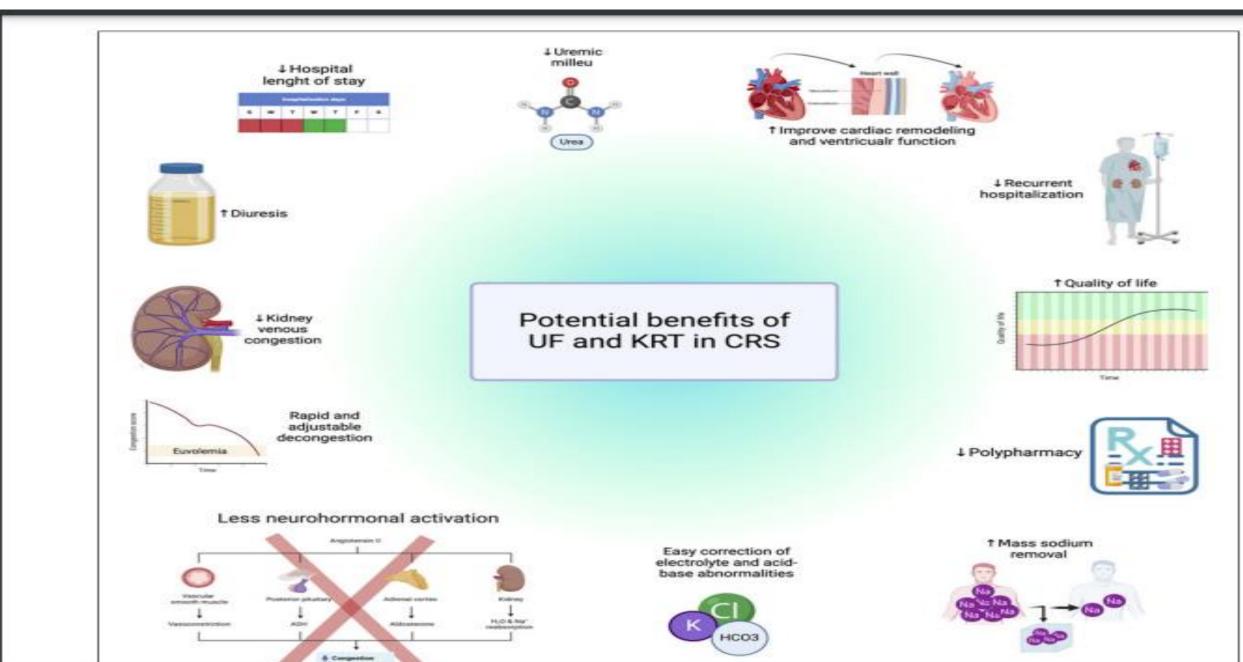
Rehospitalization

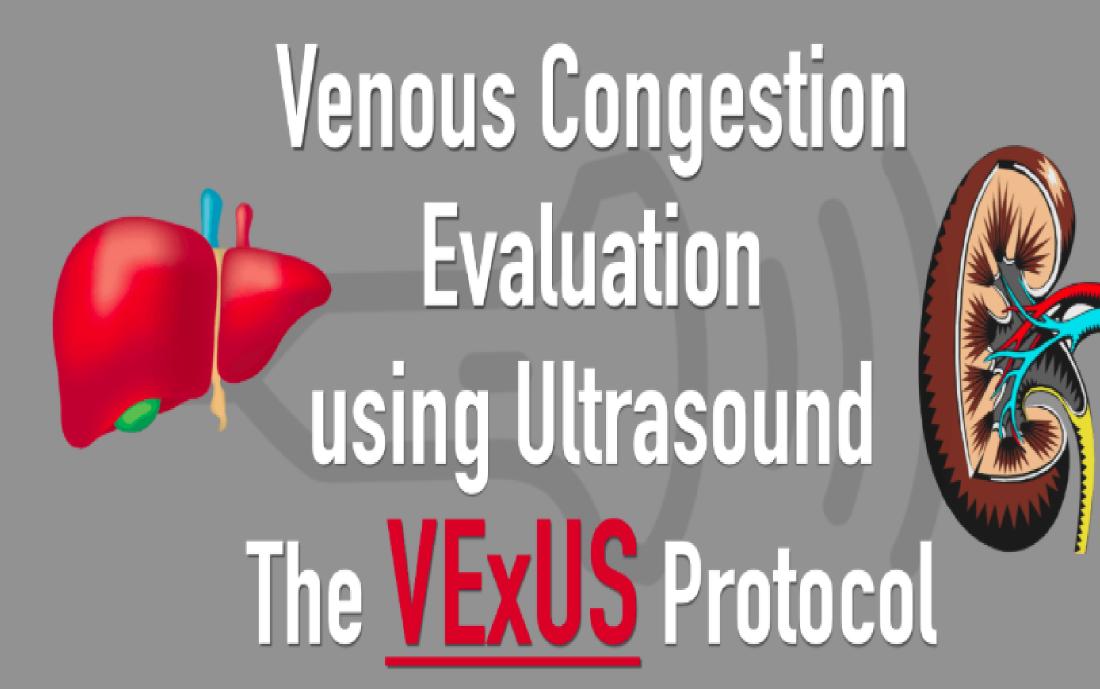
Hemodynamic instability

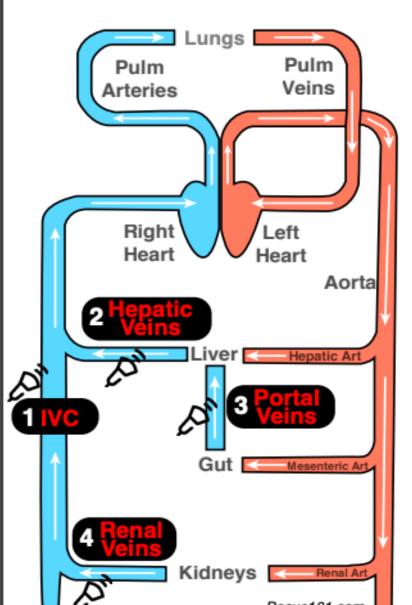
Avance Chronic Kidney disease

Isolated UF devices

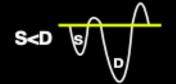
Peritoneal Dialysis


Hemodialysis Hemodiafiltration

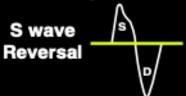



UF Or CRRT In CRS

Venous Excess Ultrasound **VExUS**


Step 1: IVC Diameter: If ≥2cm, proceed to step 2

Step 2: Hepatic Vein Doppler

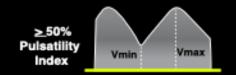

NORMAL

Mildly Abnormal

Severely Abnormal

Step 3: Portal Vein Doppler

NORMAL



*Pulsatility Index= (Vmax-Vmin)/Vmax

Mildly Abnormal

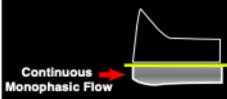
Severely Abnormal

Severely Abnormal

Step 4: Renal Vein Doppler

Mildly Abnormal

Discontinuous


Biphasic flow with

Systolic/Diastolic Phases

Discontinuous Monophasic flow with

Only Diastolic Phase

NORMAL

