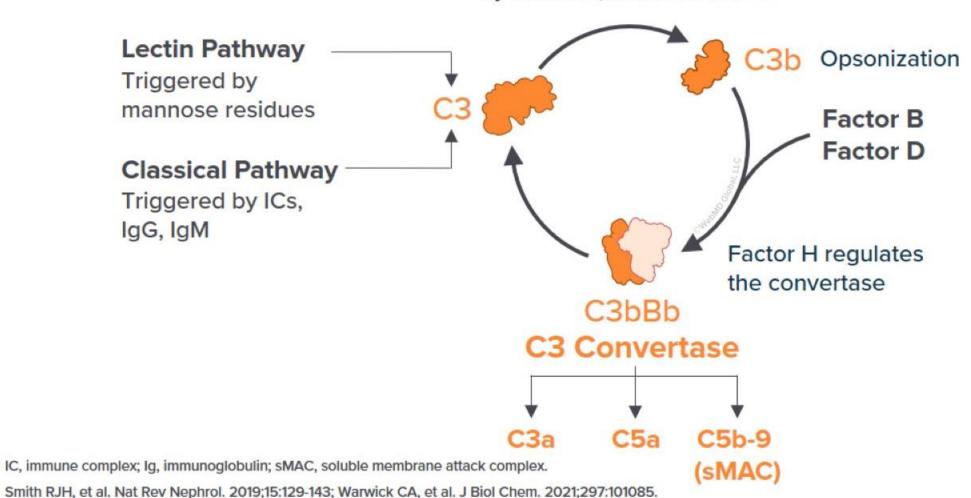


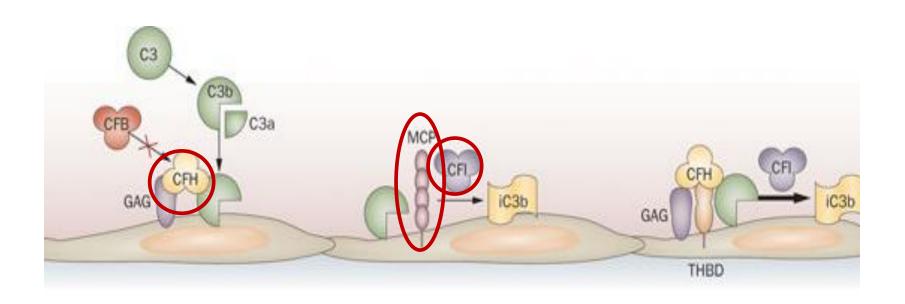
- Definition and pathogenesis
- Differential diagnosis
- Diagnostic workup and limitations
- Approach to treatment
- Importance of genetic testing
- Current Medications
- Emerging strategies
- conclusion

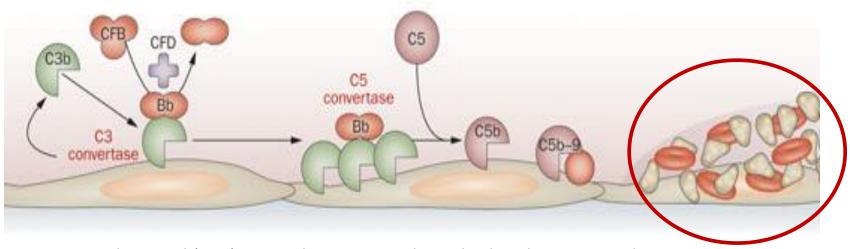
Atypical Haemolytic Uraemic Syndrome (aHUS)

- Rare disease: 2-9 people/million
- Complement mediated
- TMA
- Untreated, it leads to ESRD in up to 2 /3 affected shortly after onset or following relapses
- Very high recurrence after Tx

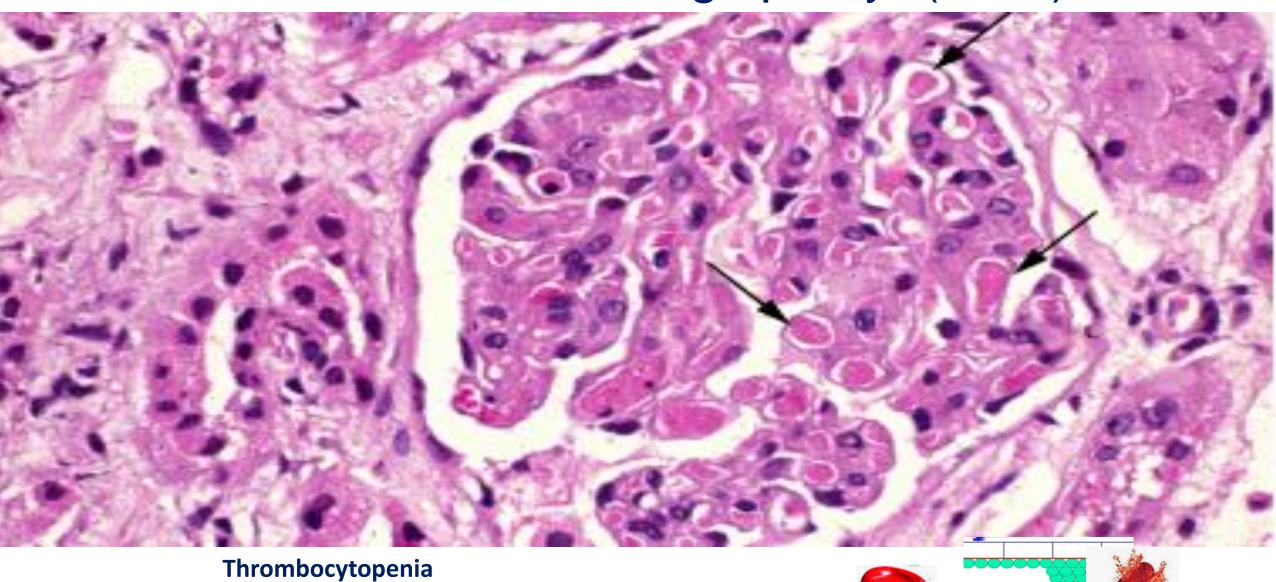

Atypical HUS Facts: 2024 www.atypicalHUSallianceaction.org

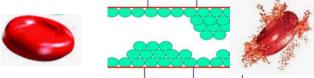
Shafer S, et al, Kidney Int: 94(2), 2018

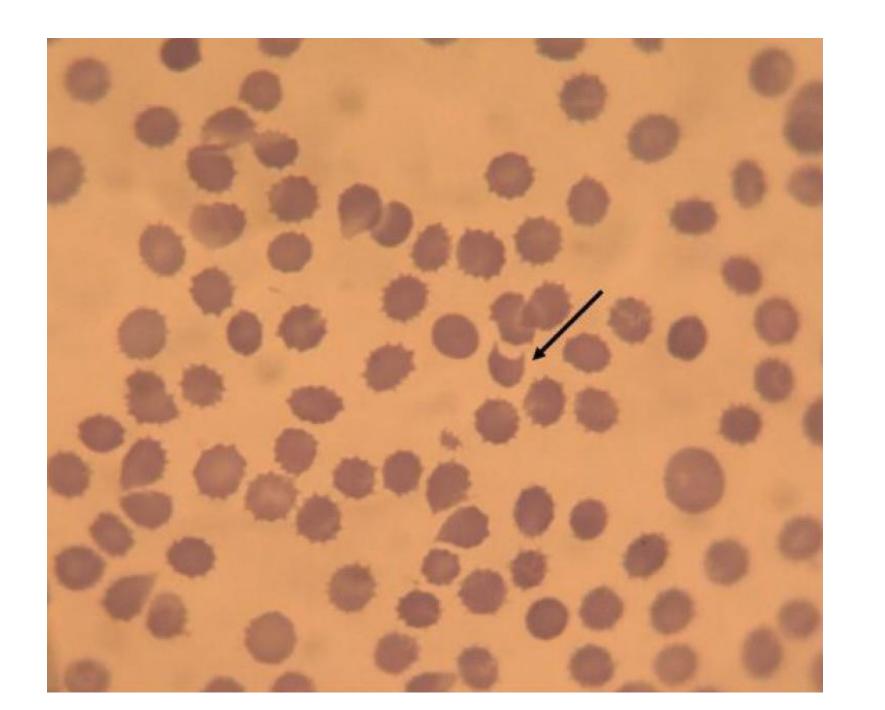

Diseases of Dysregulated Complement Activation

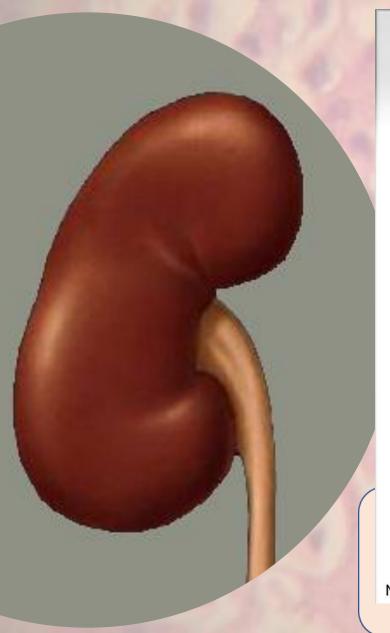

Alternative Pathway

Always active (i.e., tick-over), also triggered by bacteria, bacterial toxins


Regulated and deregulated activation of the alternative complement pathway




Zuber, J. et al. (2010) New insights into postrenal transplant hemolytic uremic syndrome Nat. Rev. Nephrol. doi:10.1038/nrneph.2010.155


Thrombotic Microangiopathy: (TMA)

Thrombocytopenia
Microangiopathic Haemolytic Anaemia (MAHA)

Complement-Mediated TMA (aHUS) Can Affect Multiple Organs, Tissues

Renal

- Edema, malignant hypertension
- Elevated creatinine
- · Decreased eGFR
- Proteinuria

CNS

- Confusion
- Stroke
- Encephalopathy
- Seizures

Blood

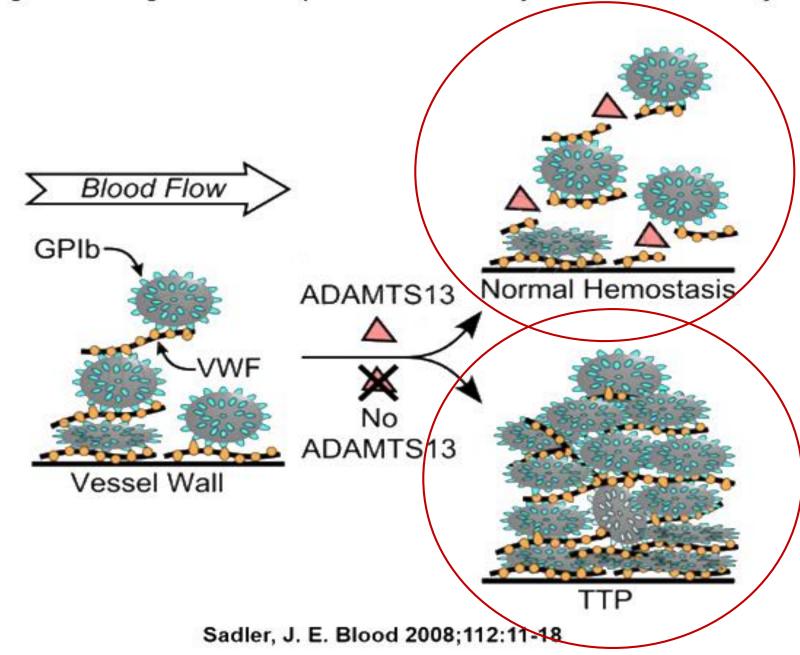
- Thrombocytopenia
- · Decreased hemoglobin
- Elevated LDH
- Decreased haptoglobin
- Schistocytes

Cardiovascular

- Diffuse vasculopathy
- Hypertension
- Myocardial infarction
- Peripheral gangrene

Gastrointestinal

- Abdominal pain
- Colitis
- Gastroenteritis
- Liver necrosis
- Nausea/vomiting
- Pancreatitis


Pulmonary

- Dyspnea
- Pulmonary edema
- Pulmonary hemorrhage

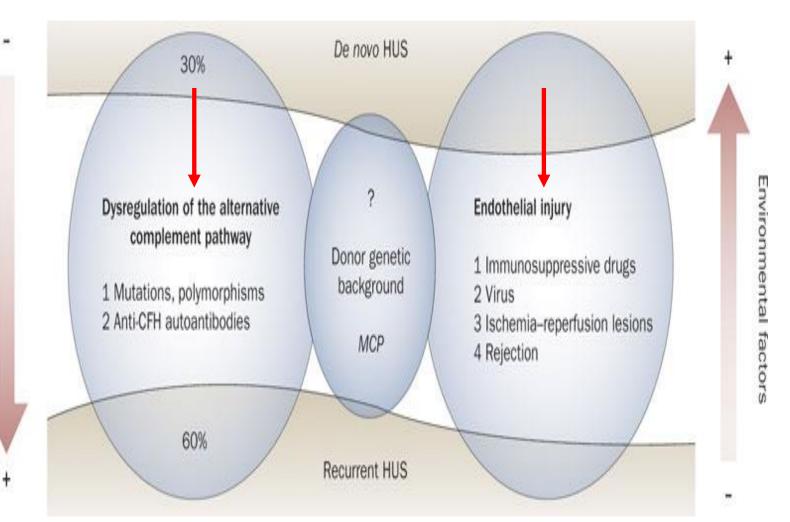
Neuhaus TJ, et al. Arch Dis Child. 1997;76:518-521^[6]; Noris M, et al. N Engl J Med. 2009;361:1676-1687.^[1]

Figure 2 Pathogenesis of idiopathic TTP caused by ADAMTS13 deficiency

Kidney International 106, 326–336, 2024

¹Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, Iowa, USA; ²National Kidney Foundation, New York, New York, USA; ³San Gabriel Valley Perinatal Medical Group, Division of Maternal Fetal Medicine, Pomona Valley Hospital Medical Center, Pomona, California, USA; ⁴Department of Medicine, The Ohio State University, Columbus, Ohio, USA; 5Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; ⁶Centre for Inflammatory Disease, Department of Immunology and

An expert discussion on the atypical hemolytic uremic syndrome nomenclature—identifying a road map to precision: a report of a National Kidney Foundation Working Group


Carla M. Nester¹, David L. Feldman², Richard Burwick³, Spero Cataland⁴, Shruti Chaturvedi⁵, H. Terence Cook⁶, Adam Cuker⁷, Bradley P. Dixon⁸, Fadi Fakhouri⁹, Sangeeta R. Hingorani¹⁰, Anuja Java¹¹, Nicole C.A.J. van de Kar¹², David Kavanagh^{13,14}, Nelson Leung^{15,16}, Christoph Licht¹⁷, Marina Noris¹⁸, Michelle M. O'Shaughnessy¹⁹, Samir V. Parikh²⁰, Flora Peyandi^{21,22}, Giuseppe Remuzzi¹⁸, Richard J.H. Smith¹, C. John Sperati²³, Meryl Waldman²⁴, Patrick Walker²⁵ and Marina Vivarelli²⁶

The term atypical hemolytic uremic syndrome has been in use since the mid-1970s. It was

Interrelation between **genetics** and **environmental** factors

Incomplete penetrance

- Additional genetic mutation
- Environmental triggering factor

Zuber, J. et al. (2010) New insights into postrenal transplant hemolytic uremic syndrome Nat. Rev. Nephrol. doi:10.1038/nrneph.2010.155

Trigger aHUS

Self-perpetuating, progressive TMA

Transient activation of complement Transient self limiting TMA

Direct endothelial damage

Diagnostic Workup

Levels of complement factors

```
C3 (660–1,250 mg/l; nephelometry), C4, CH50

CFH (338–682 mg/l; ELISA)

CFI (42–78 mg/l; ELISA)

CFB (90–320 mg/l; nephelometry)
```

- · Testing can be unreliable.
- Complement pathways can be activated in other disorders.
- Levels are normal in most patients with aHUS.

- MCP expression on peripheral blood leukocytes
- Autoantibody Screening
- Genotyping

- 30% to 50% of patients with aHUS have no identified genetic mutation
- Rule out TTP (ADAMTS13 activity)
- Rule out infection & other secondary causes: PCR for Shigatoxin in the stools, Plasma homocystein, Tests for anti-dsDNA, anti-ENA, anti-β2 GPI, anticardiolipin antibodies, lupus anticoagulant, test for monoclonal gammopathy (> 50 years)

Dilemma in a HUS DIAGNOSIS

Lack of a definitive biomarker for aHUS²

No single test can positively diagnose aHUS; complement gene variants are not detected in 40%-60% of patients with aHUS with currently available tests

Underlying conditions that trigger aHUS³

aHUS may be triggered by underlying conditions with overlapping symptoms, which may mask aHUS and complicate diagnosis

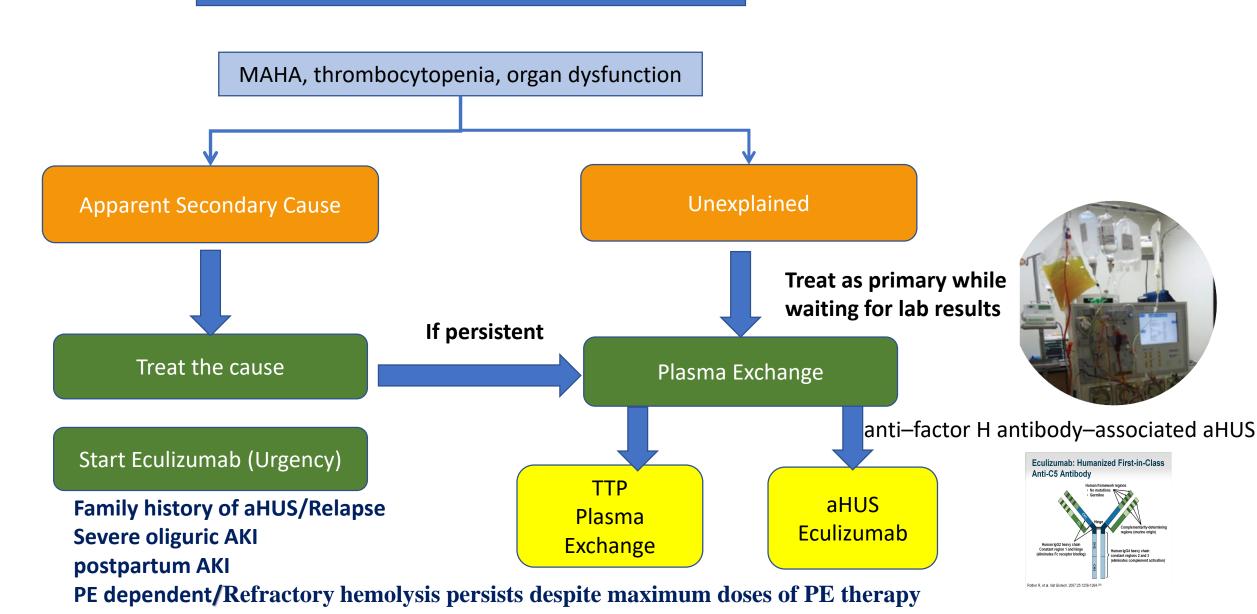
Overlapping clinical features³

Clinical features of aHUS, such as thrombocytopenia and hemolytic anemia, are characteristic of other conditions as well

Progressive onset⁴

Patients may have a progressive onset, with subclinical or fluctuating laboratory values and a gradual increase in SCr that can eventually result in CKD

A clinical diagnosis is required for aHUS, using diagnostic tests available for other causes of TMA^{1,3}


aHUS is a diagnosis of exclusion and a condition that may lead to irreversible organ damage¹

aHUS, atypical hemolytic uremic syndrome; **CKD**, chronic kidney disease; **SCr**, serum creatinine; **TMA**, thrombotic microangiopathy.

^{1.} Campistol JM, et al. Nefrologia. 2015;35(5):421-447. 2. Fakhouri F, Frémeaux-Bacchi V. Nat Rev Nephrol. 2021;17(8):543-553.

^{3.} Laurence J, et al. Clin Adv Hematol Oncol. 2016;14(11)(suppl 11):2-15. 4. Loirat C, Frémeaux-Bacchi V. Orphanet J Rare Dis. 2011;6:60. doi:10.1186/1750-1172-6-60

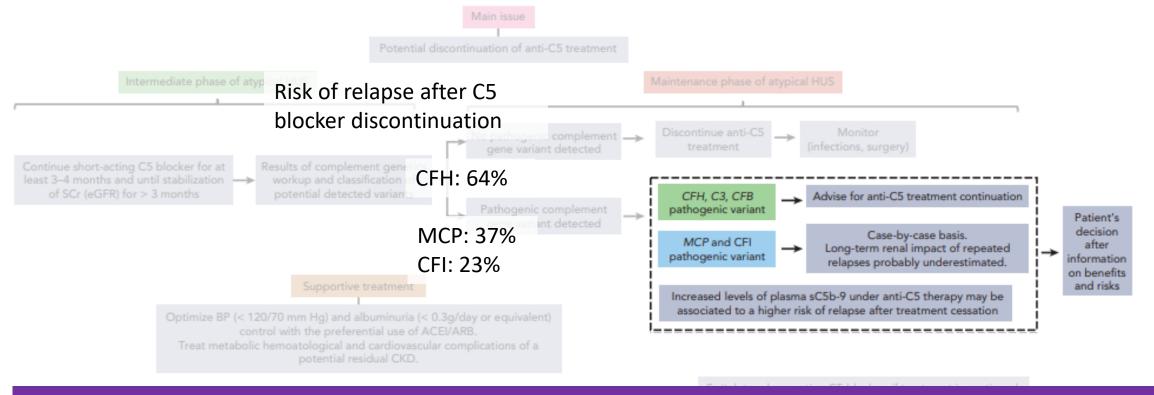
Approach to Treatment

Complement Abnormalities

Complement abnormality	Frequency (%)	NO. of Tx pts	Recurrence (% of pts)	No. of grafts	Recurrence % of grafts	Graft failure
CFH mutations	20 - 30	42	76 (32/42)	51	71 (36/51)	86 (31/36)
CFI mutations	4 - 10	12	92 (11/12)	17	88 (15/17)	85 (11/13)
MCP mutations	10 - 15	10	20 (2/10)	12	17 (2/12)	1/2
CFH autoantibodies	6	5	20 (1/5)	9	22 (2/9)	2/2
C3 mutations	5 - 10	7	57 (4/7)	14	50 (7/14)	80 (4/5)
CFB mutations	1 - 2	3	3/3	3	3/3	2/3
THBD mutations	5	1	1/1	1	1/1	1/1

Variants Risk Stratification

- joint consensus of the American College of Medical Genetics (ACMG)
- Association of Molecular Pathology
 - > Level 1: pathogenic
 - level 2: likely pathogenic
 - level 3: variants of uncertain clinical significance (VUS)
 - level 4: likely benign
 - level 5: benign.


Importance of Genetic Testing

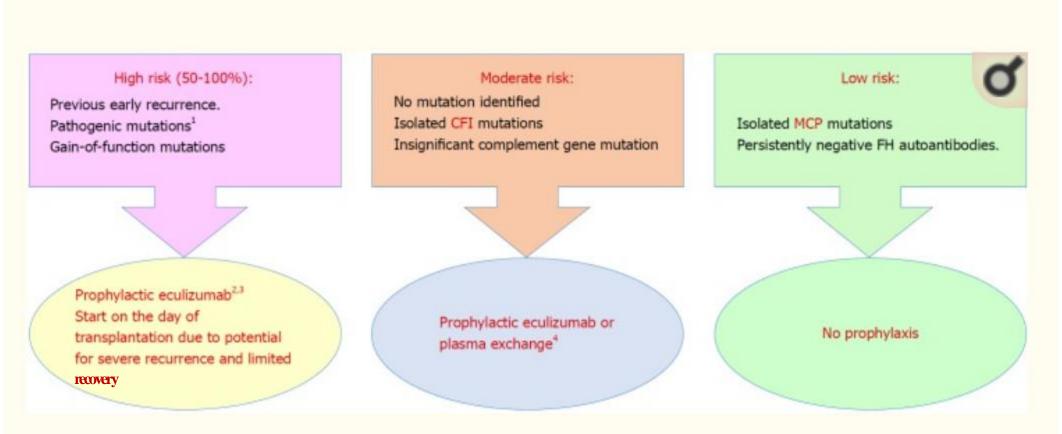
Predict progression to dialysis and recurrence after Tx

Longterm management of aHUS & treatment discontinuation

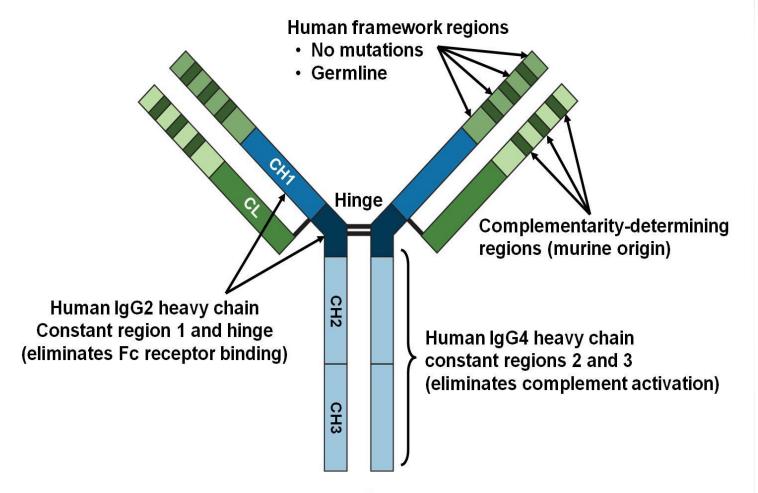
Directing prophylactic treatment before transplantation

Discontinuation of Therapy

Patients with no detected pathogenic complement variants: the risk relapse <5%: safe to discontinue treatment

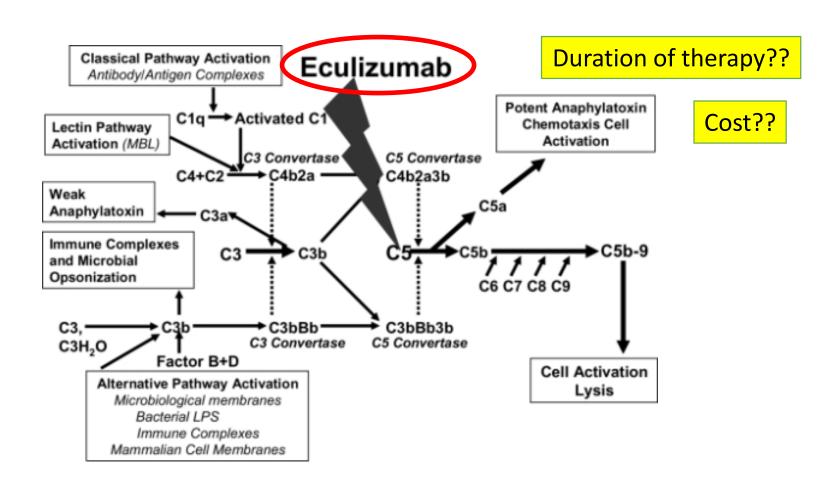

4-6 weeks (closer in case of infection, surgery, vaccine)

Monitoring

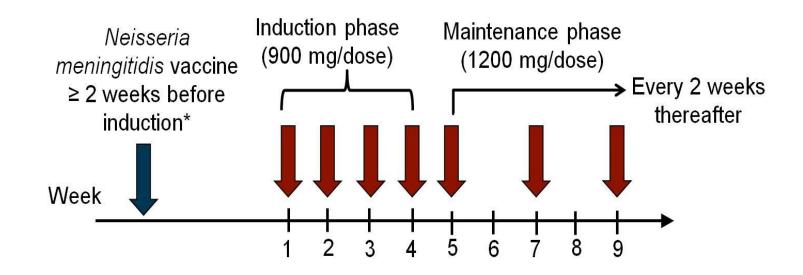

Monitoring

Extreme caution in stopping is warranted in patients with chronic kidney disease stages G3b–G5 and in kidney transplant recipients.

Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" KDIGO) Controversies



Eculizumab: Humanized First-in-Class Anti-C5 Antibody



Rother R, et al. *Nat Biotech*. 2007;25:1256-1264.^[34]

Atypical HUS Treatment

Eculizimab Dosing Schedule: Adults

- Administered via IV infusion over 35 minutes every 7 days during induction and every 14 days during maintenance
- Dose adjustment to every 12 days may be necessary.

Legendre CM, et al. N Engl J Med. 2013;368:2169-2181^[30]; Soliris[®] (eculizumab). Pl. April 2014. [35]

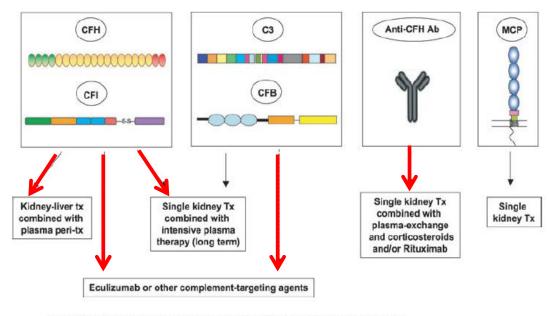

^{*}Patients not receiving vaccination at least 2 weeks before eculizumab received prophylactic antibiotics until 2 weeks after vaccination.

Table 2. Comparison of eculizumab and ravulizumab in 3 prospective noncontrolled trials in adults with aHUS

	Eculizumab (n = 17) (Legendre et al) ⁵ n, (%)	Eculizumab (n = 41) (Fakhouri et al) ⁶ n, (%) Ravulizumab (n = 58) (Rondeau et al) ⁴⁶ n, (%)					
Age, >65 y	Not available (range, 17-68)	2 (5)	8 (14.3) >60				
≥1 variant in complement gene (or anti–factor H antibodies)	13 (76)	21 (51)	8 (20.5)				
6 11116	40 (50)	44 (0/ 0)	2 (5.4)				
Advocated to use a short-acting C5 blocker during the initial acute phase of aHUS, owing to the remaining uncertainties regarding the diagnosis of aHUS and to extensive experience Dialysis requirement at inclusion 6 (35) 24 (59) 29 (51.8)							
Patients in whom C5 blockade discontinuation is not feasible or desired, a switch to a longacting C5 blocker is an option to decrease the inconvenience of repeated infusions							
	5.4.400	00 (00)	13 (50 ()				
In routine practice, only CH50 and eculizumab trough levels are used to assess the degree of terminal complement blockade for FU							
terminal complement blockade for	or FU						
Patients requiring dialysis at last follow-up	or FU 1 (6)						

Noris and Remuzzi

Prophylactic Treatment

Schematic representation of transplant options in aHUS patients. Tx: transplantation

• Eculizumab: anti C5 Mab

The introduction of eculizumab, an anti-C5 monoclonal antibody, has favorably changed the outcomes and challenged the role of TPE

 PE + IS with steroids &/or Rituximab anti CFH autoantibodies Living donation in combination with a protocol to reduce endothelial injury

Avoid ischemia-reperfusion injury, viral infection, consider Belatacept

Intensive Plasma Exchange
 Mutations affecting Plasma complement proteins

Liver Kidney Transplant CFH mutations

Noris & Remuzzi, Am J of Transplant, 10 : 1517, 2010 Kidney International, 106, 369–391, 2024

Biomarkers to diagnose and monitor complement-Mediated forms of TMA

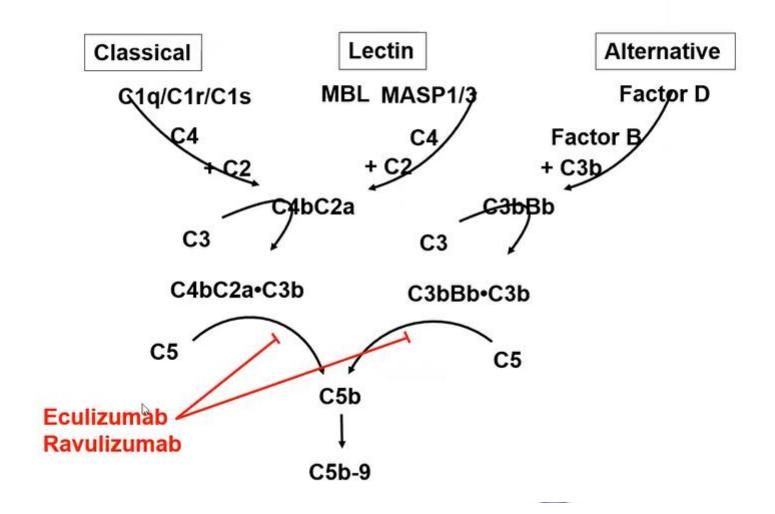
Newly developed assays such as ex vivo cell-based tests

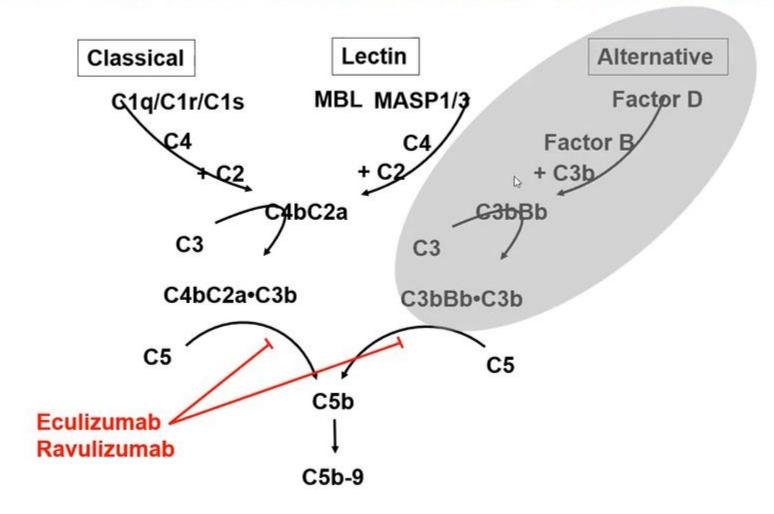
- Modifies Ham: (mHam)
- Human dermal microvascular endothelial cells-1 assay: HMEC-1, staining for C5b-9
- Complement biosensor (Autonomously bioluminescent HEK293)
 - Regardless of AP dysregulation, there is a CP stimulus in CM-HUS, explaining the mystery of why 40% of CM-HUS lack complement specific variants or autoantibodies, and suggests a breakdown in IgM immunologic tolerance as a key driver of CM-HUS
- All tests, require further validation before implementation in the clinic.

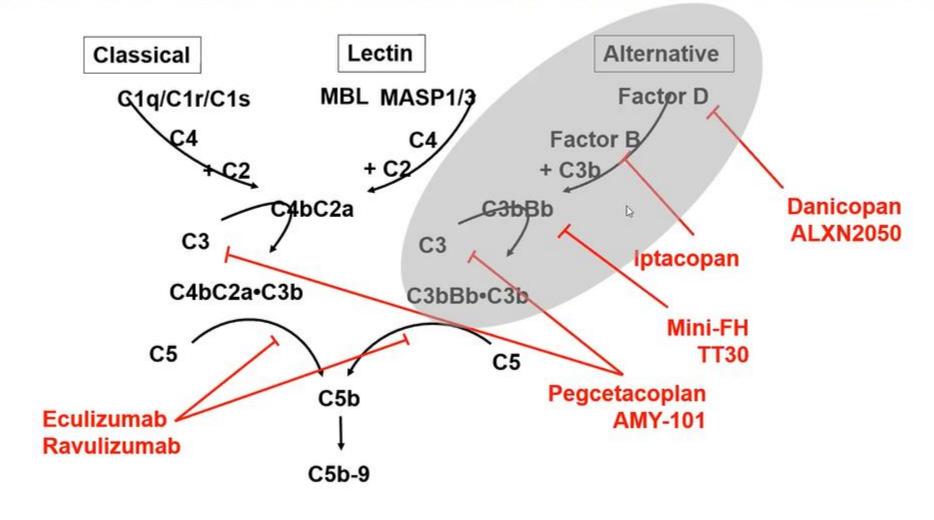
The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

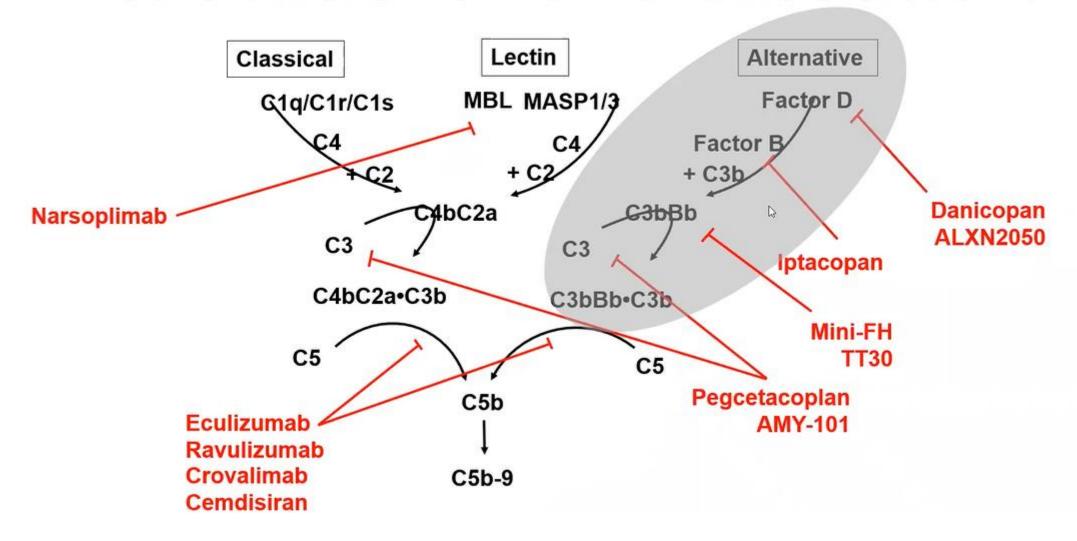
OPEN

Marina Vivarelli¹, Jonathan Barratt², Laurence H. Beck Jr³, Fadi Fakhouri^{4,5}, Daniel P. Gale⁶, Elena Goicoechea de Jorge^{7,8}, Marta Mosca⁹, Marina Noris¹⁰, Matthew C. Pickering¹¹, Katalin Susztak¹², Joshua M. Thurman¹³, Michael Cheung¹⁴, Jennifer M. King¹⁴, Michel Jadoul¹⁵, Wolfgang C. Winkelmayer¹⁶ and Richard J.H. Smith^{17,18,19}; for Conference Participants²⁰


¹Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; ²Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; ³Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA; ⁴Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; ⁵INSERM UMR S1064, Nantes, France; ⁶Centre for Kidney and Bladder Health, University College London, UK; ⁷Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; ⁸Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain; ⁹Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy; ¹⁰Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy; ¹¹Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College,


Emerging


Various C5 inhibitors are available or in development, including antibodies, small, interfering RNA, and short- and long-acting drugs with multiple modes of administration.


Targeting the C3 convertase
C3/FB/factor D inhibition is a
potential alternative

. Selective C5a or C5a receptor blockade is a potential approach that carries the advantage of preserving C5b-dependent killing of encapsulated pathogens. However, in an animal model, genetic C5a receptor invalidation did not prevent aHUS

The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference,

Kidney International 106, 369-391, 2024

Table 1 | Complement inhibitors in clinical development for kidney diseases

Target of inhibition	Drug	Inhibitor type	Mechanism	Route	Clinical trials
g	ANX009	Antibody	Inhibits C1q substrate interactions	SC	NCT05780515 (lupus nephritis, phase 1, recruiting)
C3,\C3b	Pegcetacoplan	Peptides conjugated to polyethylene glycol	Binds C3 and C3b and prevents interaction and activity of the C3 and C5 convertases of the classical, lectin, and alternative pathways	SC twice weekly	NCT05148299 (post-BMT TMA, phase 2, recruiting) NCT04572854 (post-transplant recurrence C3G or IC-MPGN, phase 2, active not recruiting) NCT03453619 (C3G) (basket in glomerulopathies, phase 2, completed) ⁴ NCT05067127 (C3G or IC-MPGN, phase 3, active not recruiting) NCT05809531 (C3G or IC-MPGN, phase 3 open-label extension of a previous study, recruiting)
C3	AMY101	Small peptide	Binds C3 and blocks its binding to and cleavage by C3 convertases into C3a and C3b	IV	NCT03316521 (phase 1 healthy male volunteers, completed)
C3	ARO-C3	Small, interfering RNA	Inhibits C3 synthesis in the liver	SC	NCT05083364 (phase 1/2a dose-escalating: healthy volunteers, adult patients with C3G and IgAN, recruiting)
C3b, C5	KP104	Antibody plus factor H regulatory domain	Blocks the alternative and terminal pathways	IV	NCT05517980 (IgAN and C3G phase 2, not yet recruiting) NCT05504187 (lupus nephritis phase 2, not yet recruiting)
C5	Cemdisiran	Small, interfering RNA	Inhibits C5 synthesis in the liver	SC	NCT03841448 (IgAN, phase 2, completed) ⁵
C5	Crovalimab	Antibody	Prevents cleavage of C5 by the C5 convertase	IV, then SC	NCT04958265 (aHUS, phase 3, recruiting, children between 28 days and 17 years of age)
C.F.	Faultan and I	And the sales	Description of CE has the CE	D./	NCT04861259 (aHUS, phase 3, recruiting)
C5	Eculizumab	Antibody	Prevents cleavage of C5 by the C5 convertase	IV	NCT03518203 (HUS post-BMT with multiple organ dysfunction syndrome, phase 2, completed) NCT01029587 (CAPS to enable kidney transplant, phase 2, completed)
					NCT05702996 (HUS secondary to gemcitabine, phase 2, not yet recruiting)
					NCT05726916 (HUS secondary to hypertensive emergency, phase 2, not yet recruiting)
					NCT02205541 (STEC-HUS, phase 3, completed) ⁶
					NCT05876351 (aHUS in China, phase 3, recruiting)
C5	Gefurulimab (ALXN1720)	Bispecific minibody	Binds C5, inhibiting its cleavage into C5a and C5b. It also binds to albumin, which increases its half-life	SC	NCT05314231 (proteinuria, phase 1B, completed)
C5	Ravulizumab	Antibody	Prevents cleavage of C5 by the C5 convertase	IV, SC	NCT04564339 (IgAN and LN, phase 2, recruiting) NCT04743804 (trigger-associated TMA, phase 2, terminated) NCT04543591 (adult and adolescent post-BMT HUS, phase 3, recruiting) NCT04557735 (pediatric post-BMT HUS, phase 3, recruiting)

Table 1 | (Continued) Complement inhibitors in clinical development^a for kidney diseases

Target of inhibition	Drug	Inhibitor type	Mechanism	Route	Clinical trials
C5	Nomacopan or coversin (rVA576)	Small protein	Inhibits terminal complement activation by tightly binding to C5 and preventing C5a release and C5b-9 formation, and inhibits leukotriene B4 by capturing the fatty acid within the body of the nomacopan protein	SC	NCT04784455 (pediatric post-BMT HUS, phase 3, recruiting)
C5a	Vilobelimab (IFX-1)	Antibody	Selectively inhibits C5a activity leaving the MAC intact	IV	NCT03712345 (GPA and MPA, phase 2, terminated) NCT03895801 (GPA and MPA, phase 2, completed)
C5aR1	Avacopan	Small molecule	Blocks the binding of the anaphylatoxin C5a with the C5aR1 receptor	Oral twice daily	NCT02464891 (aHUS on dialysis, phase 2, terminated) NCT03301467 (C3G, phase 2, completed) NCT02384317 (IgAN, phase 2, completed) NCT02994927 (AAV, phase 3, completed) NCT01363388 (AAV, phase 2, completed) NCT02222155 (AAV, phase 2, completed)
Factor B	IONIS-FB-LRx	Antisense oligonucleotide	Inhibits liver synthesis of factor B	SC	NCT04014335 (IgAN, phase 2, active not recruiting, ASN poster SA-PO926) ^{8a} NCT05797610 (IgAN, phase 3 recruiting)
Factor B	Iptacopan (LNP023)	Small molecule	Prevents activity of C3 and C5 convertases of the alternative pathway	Oral twice daily	NCT04889430 (aHUS, phase 3, recruiting) NCT03832114 (C3G, phase 2, adults with native or transplanted kidney, extension NCT03955445) NCT04817618 (C3G, phase 3, adults and adolescents >12 years, recruiting, for adults interim results reported) NCT05755386 (IC-MPGN, phase 3, adults and adolescents >12 years, recruiting) NCT03373461 (IgAN, phase 2, completed) NCT04578834 (IgAN, phase 3, recruitment completed, interim results reported) NCT04154787 (MN, phase 2, terminated) NCT05268289 (LN, phase 2, recruiting)
Factor Bb	NM8074	Monoclonal antibody	By binding Bb, it is able to inhibit both C3 and C5 convertases and the MAC formation	IV	NCT06226662 (AAV, phase 2, not yet recruiting) NCT05647811 (C3G, phase 1b/2a, not yet recruiting) NCT05684159 (aHUS, phase 2, not yet recruiting)
Factor D	BCX10013	Small molecule	Prevents formation of C3 and C5 convertases of the alternative pathway more efficiently than BCX9930	Oral once daily	NCT06100900 (PNH, phase 1, dose escalation)

	Factor D	Danicopan (ALXN2040, ACH-4471)	Small molecule	Prevents formation of C3 and C5 convertases of the alternative pathway	Oral twice daily	NCT03124368 (C3G or IC-MPGN, phase 2, completed) ^{11,12} NCT03369236 (C3G or IC-MPGN, phase 2, completed) ^{11,12} NCT03459443 (C3G or IC-MPGN, phase 2, terminated)
	Factor D	Vemircopan (ALXN2050, ACH- 0145228)	Small molecule	Prevents formation of C3 and C5 convertases of the alternative pathway	Oral	NCT05097989 (IgAN or LN, phase 2, recruiting)
/	MASP-2	CM338	Monoclonal antibody	Blocks initiation of the lectin pathway	SC	NCT05775042 (IgAN, phase 2, recruiting)
	MASP-2	Narsoplimab (OMS721)	Antibody	Blocks initiation of the lectin pathway	IV	NCT05855083 (pediatric post-BMT HUS, phase 2, recruiting) NCT03205995 (aHUS, phase 3, status unknown) NCT02682407 (C3G, IgAN, LN, MN, phase 2, status unknown) NCT03608033 (IgAN, phase 3, terminated)
/	MASP-3	OMS906	Antibody	Blocks initiation of the lectin pathway	IV	NCT06209736 (C3G, IC-MPGN, phase 2, not yet recruiting)
	Renin	Aliskiren	Small molecule	Blocks renin-mediated C3 cleavage	Oral	NCT04183101 (C3G, phase 2, recruiting)

AAV, antineutrophil cytoplasmic antibody–associated vasculitis; aHUS, atypical hemolytic uremic syndrome; BMT, bone marrow transplant; C3G, complement component 3 glomerulopathy; CAPS, catastrophic antiphospholipid syndrome; GPA, granulomatosis with polyangiitis; HUS, hemolytic uremic syndrome; IC-MPGN, immune-complex membranoproliferative glomerulonephritis; IgAN, IgA nephropathy; IV, intravenous; LN, lupus nephritis; MAC, membrane attack complex (C5b-9); MASP, mannan-binding lectin-associated serine peptidase; MN, membranous nephropathy; MPA, microscopic polyangiitis; PNH, paroxysmal nocturnal hematuria; SC, subcutaneous; STEC, Shiga toxin-producing *Escherichia coli*; TMA, thrombotic microangiopathy.

^aAs of March 1, 2024. For eculizumab, completed and published studies are not listed. For all agents, only studies evaluating the diseases covered in this paper are listed, and withdrawn studies are not listed. Studies on generic/biosimilar agents or in phase 4 are also not listed. The studies enroll adults only unless specified.

^bRecent data do not support a role for renin in the cleavage of C3 and suggest that the use of aliskiren as a renin inhibitor to decrease complement activity and C3 convertase formation is misguided.¹³

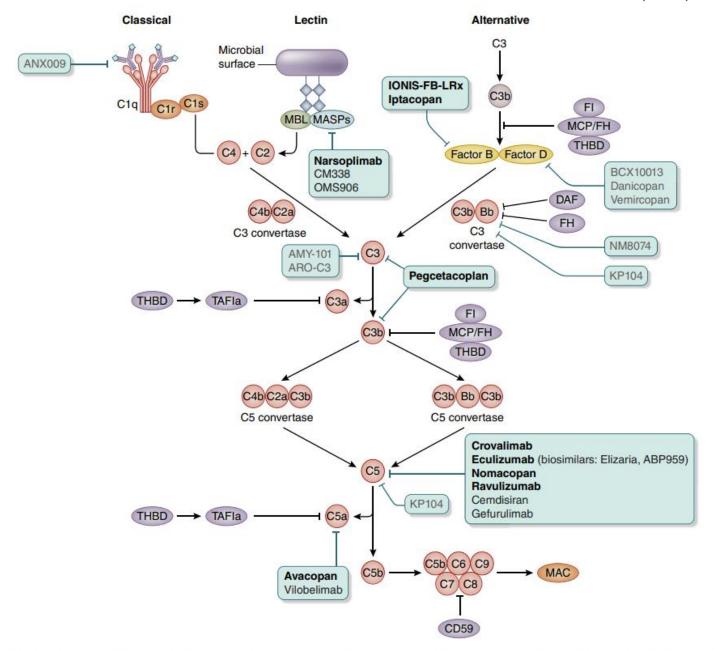
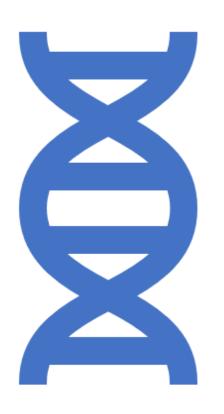



Figure 3 | Therapeutic inhibitors of complement activity. In the near future, multiple drugs that target the complement system will be

Emerging:

Gene Therapy and Targeted Complement System Modulation

- Gene therapy holds great promise for aHUS as it addresses the underlying genetic causes of the condition & provide a more permanent solution compared to current treatments like complement inhibitors
- Gene Identification: to identify the specific genetic mutations responsible for aHUS in an individual. This requires comprehensive genetic testing to pinpoint the exact genetic variations contributing to the condition.
- Gene Modification: eg: Hundreds of errors are identified in just CFH alone so far so each will have to be changed individually. Several approaches can be used, such as introducing functional genes or repairing mutations.
- Delivery Method: to transport the modified genes into the patient's cells. These delivery methods can include viral vectors, nanoparticles, or other techniques.
- This is still an evolving field, and ongoing research is needed to refine

Conclusion

- aHUS is a genetic disease that is potentially life-threatening, can affect all organ systems, and has a poor prognosis if not recognized quickly and appropriately treated
- There are still many knowledge gaps across aHUS
- No single test can positively diagnose aHUS & it is still a diagnosis of exclusion
- Much is unknown about how certain circumstances regarding genetics and environmental factors may combine to trigger atypical HUS disease activity
- Eculizumab and Ravulizumab have proved effective in suppressing disease activity, but no definite cure, price prohibiting
- Research is ongoing to find a definite diagnostic test, and also explore other alternative or combined treatment strategies
- Encouraging the use of registries, biobanks, and open data sharing will enhance our understanding, enabling us to provide our patients with early and accurate diagnoses, as well as safe and affordable treatments.

